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Abstract— The work of Alan Turing and John von Neu-
mann on machine intelligence and artificial automata is
reviewed. Turing’s proposal to create a child machine with
the ability to learn is discussed. Von Neumann’s had doubts
that with teacher based learning it will be possible to
create artificial intelligence. He concentrated his research
on the issue of complication, probabilistic logic, and self-
reproducing automata. The problem of creating artificial
intelligence is far from being solved. In the last sections
of the paper I review the state of the art in probabilistic
logic, complexity research, and transfer learning. These topics
have been identified as essential components of artificial
intelligence by Turing and von Neumann.

I. INTRODUCTION

Computer based research on machine intelligence
started about 60 years ago, parallel to the construction
of the first electronic computers. Therefore it seems to
be time again to compare todays state-of-the art with
thoughts and proposals at the very beginning of the
computer age. I have chosen Alan Turing and John von
Neumann as the most important representatives of the
first concepts of machine intelligence. Both researchers
actually designed electronic computers, but they also
reflected about what the new electronic computers
could be expected to solve in addition to numerical
computation. Both discussed intensively the problem
how the performance of the machines will ultimately
compare to the power of the human brain.

In this paper I will first review the work of Alan
Turing, contained in his seminal paper ”Computing
Machinery and Intelligence” (17) and in the not so well
known paper ”Intelligent Machinery” (18). Then I will
discuss the most important paper of John von Neumann
concerning our subject ”The General and Logical Theory
of Automata” (22). All three papers have been written
before the first electronic computers became available.
Turing even wrote programs for paper machines.

I will describe the thoughts and opinions of Turing
and von Neumann in detail, without commenting them

using todays knowledge. Then I will try to evaluate their
proposals in answering the following questions

• What are their major ideas for creating machine
intelligence?

• Did their proposals lack important components we
see as necessary today?

• What are the major problems of their designs and
do their exists solutions today?

This paper extends my research started in (12).

II. TURING AND MACHINE INTELLIGENCE

The first sentences of the paper ”Computing machinery
and intelligence” have become famous. ”I propose
to consider the question ”Can machines think?” This
should begin with definitions of the meaning of the
terms ”machine” and ”think”....But this is absurd.
Instead of attempting such a definition I shall replace
the question by another, which is closely related to it
and is expressed in relatively unambiguous words. The
new form of the question can be described in terms of
a game which we call the imitation game.”

The original definition of the imitation game is more
complicated than what is today described as the Turing
test. Therefore I describe it shortly. It is played with
three actors, a man (A), a woman (B) and an interrogator
(C). The object of the game for the interrogator is to
determine which of the other two is the man and which
is the woman. It is A’s objective in the game to try and
cause C to make the wrong identification. Turing then
continues: ”We now ask the question ”What will happen
when a machine takes the part of A in the game?”
Will the interrogator decide wrongly as often when the
game is played as this as he does when the game is
played between a man and a woman? These questions
will replace our original ”Can machines think”.

Why did Turing not define just a game between a human
and a machine trying to imitate a human, as the Turing
test is described today? Is there an additional trick in



introducing gender into the game? There has been a
quite a lot of discussions if this game characterizes hu-
man intelligence at all. Its purely behavioristic definition
leaves out any attempt to identify important components
which together produce human intelligence. I will not
enter this discussion here, but just state the opinion of
Turing about the outcome of the imitation game.
”It will simplify matters for the readers if I explain
first my own beliefs in the matter. Consider first the
more accurate form of the question. I believe that in
about fifty years’ time it will be possible to programme
computers with a storage capacity of about 109 bits to
make them play the imitation game so well that an
average interrogator will not have more than 70% chance
of making the right identification after five minutes of
questioning.”
The accurate form of the question is obviously artificial
definite: Why a 70% chance, how often has the game
to be played, why a duration of five minutes? In the
next section I will discuss what Turing lead to predict
50 years. The prediction is derived in section 7 of his
paper, where Turing discusses learning machines (17).

III. TURING’S CONSTRUCTION OF AN INTELLIGENT
MACHINE

In section 7 Turing discusses the construction of an
intelligent machine. In the sections before Turing
mainly refuses general philosophical arguments against
intelligent machines. ”The reader will have anticipated
that I have no very convincing argument of a positive
nature to support my views. If I had I should not have
taken such pains to point out the fallacies in contrary
views. Such evidence as I have I shall now give.” What
is Turing’s evidence?

”As I have explained, the problem is mainly one of
programming. Advances in engineering will have to be made
too, but it seems unlikely that these will not be adequate for
the requirements. Estimates of the storage capacity of the
brain vary from 1010 to 1015 binary digits.1 I incline to the
lower values and believe that only a small fraction is used
for the higher types of thinking. Most of it is probably used
for the retention of visual impressions. I should be surprised
if more than 109 was required for satisfactory playing of
the imitation game. Our problem then is to find out how
to programme these machines to play the game. At my
present rate of working I produce about a thousand digits
of programme a day, so that about sixty workers, working
steadily through fifty years might accomplish the job, if
nothing went into the wastepaper basket.”

The time to construct a machine which passes the imi-
tation game is derived from an estimate of the storage

1At this time the number of neurons was estimated as being between
10

10 to 10
15. This agrees with the estimates using todays knowledge.

capacity of the brain 2 and the speed of programming.
Turing did not see any problems in creating machine
intelligence purely by programming, he just found it too
time consuming. So he investigated if there exist more
expeditious methods. He observed. ”In the process of
trying to imitate an adult human mind we are bound to
think a good deal about the process which has brought it
to the state that it is in. We may notice three components.

1) The initial state of the brain, say at birth.
2) The education to which it has been subjected.
3) Other experience, not to be described as education,

to which it has been been subjected.
Instead of trying to produce a programme to simulate
an adult mind, why not rather try to produce one
which simulates the child’s...Presumably the child brain
is something like a notebook. Rather little mechanism,
and lots of blank sheets. Our hope is that there is so
little mechanism in the child brain that something like it
can easily be programmed. The amount of work in the
education we can assume, as a first approximation, to be
much the same as for the human child.”

A. Turing on learning and evolution
In order to achieve a greater efficiency in constructing
a machine with human like intelligence, Turing divided
the problem into two parts

• The construction of a child brain
• The development of effective learning methods

Turing notes that the two parts remain very closely
related. He proposes to use experiments: teaching a child
machine and see how well it learns. One should then
try another and see if it is better or worse. ”There is an
obvious connection between this process and evolution,
by the identifications

• structure of the machine = hereditary material
• changes of the machine = mutations
• Natural selection = judgment of the experimenter

Survival of the fittest is a slow process of measuring
advantages. The experimenter, by the exercise of
intelligence, should be able to speed it up.”

Turing then discusses learning methods. He notes
((17),p.454):”We normally associate the use of punish-
ments and rewards with the teaching process...The ma-
chine has to be so constructed that events which shortly
proceeded the occurrence of a punishment signal are un-
likely to be repeated, whereas a reward signal increased
the probability of repetition of the events which lead
to it.” But Turing observes the major drawback of this
method:”The use of punishments and rewards can at
best be part of the teaching process. Roughly speaking,

2It was of course a big mistake to set the storage capacity equal to the
number of neurons! We will later show that von Neumann estimated
the storage capacity of the brain to be about 10

20.



if the teacher has no other means of communicating to
the people, the amount of information which can reach
him does not exceed the total number of rewards and
punishments applied.”
In order to speed up learning Turing demanded that the
child machine should understand some language. In the
final pages of the paper Turing discusses the problem
of the complexity the child machine should have. He
proposes to try two alternatives: either to make it as
simple as possible to allow learning or to include a
complete system of logical inference. He ends his paper
with the remarks: ”Again I do not know the answer, but
I think both approaches should be tried. We can see only
see a short distance ahead, but we can see plenty there
that needs to be done.”

B. Turing and neural networks
In the posthumously published paper Intelligent
Machinery (18) Turing describes additional details how
to create an intelligent machine. First he discusses
possible components of a child machine. He introduces
unorganized machines of type A,B, and P. A and B are
artificial neural networks with random connections.
They are made up from a rather large number N of
similar units, which can be seen as binary neurons.
Each unit has two input terminals and one output
terminal which can be connected to the input terminals
of 0 (or more) other units. The connections are chosen
at random. All units are connected to a central
synchronizing unit from which synchronizing pulses
are emitted. Each unit has two states. The dynamics is
defined by the following rule:

The states from the units from which the input comes are
taken from the previous moment, multiplied together and the
result is subtracted from 1.

This rule gives the following transition table.

0 0 1
1 0 1
0 1 1
1 1 0

The state of the network is defined by the states of the
units. Note that the network might have lots of loops,
it continually goes through a number of states until
a period begins. The period cannot exceed 2N cycles.
In order to allow learning the machine is connected
with some input device which can alter its behavior.
This might be a dramatic change of the structure, or
changing the state of the network. Maybe Turing had
the intuitive feeling that the basic transition of the type
A machine is not enough, therefore he introduced the
more complex B-type machine. I will not describe this

machine here, because neither for the A or the B machine
Turing defined precisely how learning can be done.
A learning mechanism is introduced with the third
machine, called a P-type machine. The machine is an
automaton with a number of N configurations. There
exist a table where for each configuration is specified
which action the machine has to take. The action may
be either

1) To do some externally visible act A1, . . . Ak

2) To set a memory unit Mi

The reader should have noticed that the next
configuration is not yet specified. Turing surprisingly
defines: The next configuration is always the remainder
of 2s or 2s + 1 on division by N . These are called the
alternatives 0 and 1. The reason for this definition is
the learning mechanism Turing defines. At the start the
description of the machine is largely incomplete. The
entries for each configuration might be in five states,
either U (uncertain), or T0 (try alternative 0), T1 (try
alternative 1), D0 (definite 0) or D1 (definite 1).

Learning changes the entries as follows: If the entry is
U, the alternative is chosen at random, and the entry is
changed to either T0 or T1 according to whether 0 or 1
was chosen. For the other four states, the corresponding
alternatives are chosen. When a pleasure stimulus
occurs, state T is changed to state D, when a pain
stimulus occurs, T is changed to U. Note that state
D cannot be changed. The proposed learning method
sounds very simple, but Turing surprisingly remarked:

I have succeeded in organizing such a (paper) machine into a
universal machine.

Today this universal machine is called the Turing Ma-
chine. Turing even gave some details of this particular
P-type machine. Each instruction consisted of 128 digits,
forming four sets of 32 digits, each of which describes
one place in the main memory. These places may be
called P,Q,R,S. The meaning of the instruction is that if
p is the digit at P and q that at Q then 1 − pq is to be
transferred to position R and the next instruction will be
found at S. The universal machine is not the solution to
the problem, it has to be programmed!

C. Discipline and initiative
We now turn to the next important observation of
Turing. Turing notes that punishment and reward are
very slow learning techniques. So he requires:

If the untrained infant’s mind is to become an intelligent one,
it must acquire both discipline and initiative.

Discipline means strictly obeying the punishment and
reward. But what is initiative? The definition of initiative



is typical of Turing’s behavioristic attitude. ”Discipline
is certainly not enough in itself to produce intelligence.
That which is required in addition we call initiative.
This statement will have to serve as a definition. Our
task is to discover the nature of this residue as it occurs
in man, and to try and copy it in machines.”

With only a paper computer available Turing was
not able to investigate the subject initiative further.
Nevertheless he made the bold statement (18): ”A great
positive reason for believing in the possibility of making
thinking machinery is the fact that it is possible to make
machinery to imitate any small part of a man. One
way of setting about our task of building a thinking
machine would be to take a man as a whole and to try
to replace all parts of him by machinery...Thus although
this method is probably the ’sure’ way of producing a
thinking machine it seems to be altogether too slow and
impracticable. Instead we propose to try and see what
can be done with a ’brain’ which is more or less without
a body providing, at most organs of sight, speech, and
hearing. We are then faced with the problem of finding
suitable branches of thought for the machine to exercise
its powers in.”

Turing mentions the following fields as promising:
• Various games, e.g. chess, bridge
• The learning of languages
• Translation of languages
• Cryptography
• Mathematics

Turing remarks: ”The learning of languages would be
the most impressive, since it is the most human of
these activities. This field seems however to depend
rather too much on sense organs and locomotion to
be feasible.” Turing seems here to have forgotten that
language learning is necessary for his imitation game!

IV. VON NEUMANN’S LOGICAL THEORY OF AUTOMATA

Alan Turing was for a short time in 1938 assistant of
John von Neumann. But later they worked completely
independent from each other, not knowing the thoughts
the other had concerning the power of the new electronic
computers. A condensed summary of the research of
John von Neumann concerning machine intelligence,
or in his more low-key term ”artificial automata”, is
contained in his paper ”The General and Logical Theory
of Automata” (22). This paper was presented in 1948 at
the Hixon symposium on: Cerebral mechanism of behavior.
Von Neumann was the only computer scientist at this
symposium. His invitation indicates his interdisciplinary
research. This is clearly expressed in the first page:

Natural organisms are, as a rule, much more complicated
and subtle, and therefore much less well understood in

detail, than are artificial automata. Nevertheless, some of the
regularities which we observe in the former may be quite
instructive in our thinking and planning of the latter; and
conversely, a good deal of our experiences and difficulties
with our artificial automata can be to some extend projected
on our interpretations of natural organisms.

Von Neumann notices three major limits of the present
size of artificial automata

• The size of componentry
• The limited reliability
• The lack of a logical theory of automata

There have been tremendous achievements in the first
two areas. Therefore I will concentrate on the theory
problem. The new theory of logical automata has to
investigate the following topics.

”The logic of automata will differ from the present system of
formal logic in two relevant respects.

1) The actual length of ”chains of reasoning”, that is, of
the chains of operations, will have to be considered.

2) The operations of logic will all have to be treated by
procedures which allow exceptions with low but non-
zero probabilities.

Von Neumann tried later to formulate probabilistic logic.
His results appeared in (23). But this research was more
or less a dead end, because von Neumann did not
abstract enough from the logical hardware components
and introduced time into the analysis. But in (22) he
remarked prophetically:
This new system of formal logic will move closer to another
discipline which has been little linked in the past with logic.
This is thermodynamics, primarily in the form it was received
from Boltzmann, and is that part of theoretical physics which
comes nearest in some of its aspects to manipulating and
measuring information.

A. McCulloch-Pitts theory of formal neural networks
In (9) McCulloch and Pitts had described the brain by
a formal neural network, consisting of interconnected
binary neurons. Von Neumann summarizes their major
result follows: ”The ”functioning” of such a network
may be defined by singling out some of the inputs of
the entire system and some of its outputs, and then
describing what original stimuli on the former are to
cause what ultimate stimuli of the latter. McCulloch and
Pitts’ important result is that any functioning in this
sense which can be defined at all logical, strictly, and
unambiguously in a finite number of words can also be
realized by such a formal system.”

McCulloch and Pitts had derived this result by showing
that their formal neural network connected to an infinite
tape is equivalent to a Turing machine. But even given



this result, von Neumann observes that at least two
problems remain

1) Can the network be realized within a practical size?
2) Can every existing mode of behavior really be put

completely and unambiguously into word?
Von Neumann informally discusses the second
problem, using the example visual analogy. He remarks
prophetically:

There is no doubt that any special phase of any conceivable
form of behavior can be described ”completely and
unambiguously” in words.... It is, however an important
limitation, that this applies only to every element separately,
and it is far from clear how it will apply to the entire
syndrome of behavior.

This severe problem has not been noticed by Turing.
Using the example visual analogy von Neumann argues:
”One can start describing to identify any two rectilinear
triangles. These could be extended to triangles which
are curved, whose sides are only partially drawn etc...
We may have a vague and uncomfortable feeling that a
complete catalogue along such lines would not only be
exceedingly long, but also unavoidingly indefinite at its
boundaries. All of this, however, constitutes only a small
fragment of the more general concept of identification
of analogous geometrical objects. This, in turn, is only
a microscopic piece of the general concept of visual
analogy.” Thus von Neumann comes to the conclusion:

Now it is perfectly possible that the simplest and only
practical way to say what constitutes a visual analogy
consists in giving a description of the connections of the
visual brain....It is not at all certain that in this domain a
real object might not constitute the simplest description of
itself 3.

Von Neumann ended this section with the sentence: ”The
foregoing analysis shows that one of the relevant things
we can do at this moment is to point out the directions
in which the real problem does not lie.” Instead of
investigating the above complexity issue directly, von
Neumann turned to the more fundamental problem of
the complexity needed for automata solving difficult
problems.

B. Complication and self-reproduction

Von Neumann starts the discussion of complexity with
the observation that if an automaton has the ability
to construct another one, there must be a decrease in
complication. In contrast, natural organisms reproduce
themselves, that is, they produce new organisms with no

3Note the similarity to Kolmogorov complexity

decrease in complexity. So von Neumann tries to con-
struct a general artificial automata which could repro-
duce itself. The famous construction works as follows:

1) A general constructive machine, A, which can read
a description Φ(X) of another machine, X, and
build a copy of X from this description:

A + Φ(X) ; X

2) A general copying machine, B. which can copy the
instruction tape:

B + Φ(X) ; Φ(X)

3) A control machine, C, which when combined with
A and B, will first activate B, then A, link X to
Phi(X) and cut them loose from A+B+C

A + B + C + Φ(X) ; X + Φ(X)

Now choose X to be A+B+C

A+B+C+Φ(A+B+C) ; A+B+C+Φ(A+B+C)

4) It is possible to add the description of any automa-
ton D

A + B + C + Φ(A + B + C + D) ; A + B + C + D

+Φ(A + B + C + D)

Now allow mutation on the description Φ(A+B +
C + D)

A + B + C + Φ(A + B + C + D′) ; A + B + C + D′

+Φ(A + B + C + D′)

Mutation at the D description will lead to a different self-
reproducing automaton. This might allow to simulate
some kind of evolution as seen in natural organisms.
Von Neumann later constructed a self-reproducing
automata which consisted of 29 states (24). This
convinced von Neumann that complication can also be
found in artificial automata. Von Neumann ends the
paper with the remark:

This fact, that complication, as well as organization, below
a critical level is degenerative, and beyond that level can
become self-supporting and even increasing, will clearly play
an important role in any future theory of the subject.

V. DISCUSSION OF THE DESIGNS OF TURING AND VON
NEUMANN

I have reviewed only a small part of the research
of Turing and von Neumann concerning machine
intelligence and artificial automata. But one observation
strikes immediately: both researchers investigated the
problem of machine intelligence on a very broad scale.
The main emphasis of Turing was the design of efficient



learning schemes. For Turing it was obvious that only
by learning and creating something like a child machine
an intelligent machine could be developed. The attitude
of Turing was purely that of a computer scientist.
Using mainly an estimate of the memory capacity
of the human brain, he firmly believed that machine
intelligence equal to or surpassing human intelligence
can be created.

Von Neumann’s approach was more interdisciplinary,
using also results from the analysis of the brain. He
had a similar goal, but he was much more cautious
concerning the possibility to create an automaton with
intelligence. He investigated important problems one
by one which appeared him on the road to machine
intelligence.

Both researchers investigated formal neural networks as
a basic component of an artificial brain. This component
was not necessary for the design, it was used only to
show that the artificial automata could have a similar
organization as the human brain. Both researchers ruled
out that a universal theory of intelligence could be
found, which would make it possible to program a
computer according to this theory. So Turing proposed
to use learning as the basic mechanism, von Neumann
self-reproducing automata. Von Neumann was more
radical because he was convinced that learning leads
to the curse of infinite enumeration. Turing also saw the
limitations of teacher based learning by reward and
punishment, therefore he required that the machine
needs initiative in addition.

The designs of Turing and von Neumann contain all
components considered necessary today for machine in-
telligence. Turing ended his investigation with the prob-
lem of initiative, which is still an unresolved issue today.
Von Neumann’s idea to use self-reproducing automata
has not yet lead to an automata with interesting be-
havior. The problem of von Neumann’s approach is the
following: In order that his automaton does something
besides reproducing one has to input a program D for
each task. How can the machine develop more complex
programs starting with an initial program?
There seem to be no major failure in their designs, but
at least two major issues are not yet resolved

• The memory capacity of the brain
• Can every problem which is computable be learned

from examples?
I will discuss the capacity problem first.

VI. MEMORY CAPACITY OF THE BRAIN

Von Neumann also estimated the capacity of the brain.
His estimate can be found in the book ”The computer

and the brain” ((23),p. 63)

”However, certain rough orienting estimates can, nevertheless,
be arrived at. Thus the standard receptor (neuron) would
seem to accept 14 distinct digital impressions per second.
Allowing 1010 nerve cells gives a total input of 14 ∗ 1010

bits per second. Assuming further, for which there is some
evidence, that there is no true forgetting in the nervous
system - an estimate for the entirety of a normal human
lifetime can be made. Putting the latter equal to, say, 60
years ≈ 2 ∗ 109 seconds, the total required memory capacity
would turn out to be 2.8 ∗ 1020.”

Note that this estimate is 1010 times larger than the
estimate of Turing! There is still no agreement on the
memory capacity of the brain. The brain is highly
redundant and not well understood: the mere fact that
a great mass of synapses exists does not imply that
they are in fact all contributing to memory capacity.
A totally different method to estimate the capacity
has been pursued by Landauer (4). He reviewed and
quantitatively analyzed experiments by himself and
others in which people were asked to read text, look
at pictures, and hear words, short passages of music,
sentences, and nonsense syllables. After delays ranging
from minutes to days the subjects were tested to
determine how much they had retained. The tests were
quite sensitive–they did not merely ask ”What do you
remember?” but often used true/false or multiple choice
questions, in which even a vague memory of the material
would allow selection of the correct choice. Because
experiments by many different experimenters were
summarized and analyzed, the results of the analysis
are fairly robust; they are insensitive to fine details
or specific conditions of one or another experiment.
Finally, the amount remembered was divided by the
time allotted to memorization to determine the number
of bits remembered per second.

The remarkable result of this work was that human
beings remembered very nearly two bits per second under
all the experimental conditions. Visual, verbal, musical, or
whatever–two bits per second. Continued over a lifetime,
this rate of memorization would produce somewhat over
109 bits, or a few hundred megabytes. This estimate is
surprisingly identical to Turing’s estimate. But the issue
is far from being resolved. I will only mention an esti-
mate nearer to the estimate of von Neumann. Moravec
(10) recently tried to compare computer hardware and
the brain. He estimated the memory capacity as 100
million megabytes, which are about 1015 bits.

VII. COMPUTATIONAL LEARNING THEORY

Complexity issues are dealt with in the areas
computability theory, complexity theory, theory of



inductive inference, and computational learning
theory. Computability theory investigates what can be
computed, the theory of inductive inference what can
be learned at all. They are historically prior to and part
of their polynomially-obsessed younger counterparts.
In fact, Turing founded computability theory and made
the major contribution.

In this section I will concentrate on computational
learning theory, because it fulfills von Neumann’s
requirement to investigate the space and the number of
steps to learn a problem. The following review is based
on the survey of Angluin (1). He defines the goals of
the field as:

Give a rigorous computationally detailed and plausible
account of how learning can be done.

These goals are far from being achieved. There is even
not an agreement on a precise definition of learning. So
far the emphasis has been on inductive learning and
particular PAC (probably approximately correct learn-
ing) introduced by Valiant 1984 (20). In this framework
the learner gets samples that are classified according to
a function from a certain class. The aim of the learner
is to find an approximation of the function with high
probability. We demand the learner to be able to learn
the concept given any arbitrary approximation ratio,
probability of success or distribution of the samples.
More precisely:
Algorithm A PAC-identifies concepts from C in terms
of the hypothesis space H if and only if for every
distribution D and every concept c ∈ C, for all positive
numbers ε and δ and access to the example oracle, it
eventually halts and outputs a concept h ∈ H that with
probability at least 1 − δ and error D(c∆h) < ε, where
c∆h is the symmetric difference between the subsets of
X characterizing the concepts c and h. The model was
further extended to treat noise (misclassified samples).
There have been lots of interesting results achieved. But
until today many problems are open. I just mention the
problem if distributed normal forms DNF in Boolean
space are PAC-learnable in polynomial time. This result
supports von Neumann’s feeling that simple learning
mechanisms lead to the curse of exponential enumer-
ation.

VIII. HOW TO GET COMMON SENSE INTO A MACHINE

Turing’s idea of creating first a child machine was
reinvented by John McCarthy in 1999 (8). He wrote
an essay on an artificial child brain as a step towards
creating human like intelligence. He writes in the
abstract:

”The innate mental structure that equips a child to
interact successfully with the world includes more than
universal grammar. The world itself has structures, and
nature has evolved brains with ways of recognizing
them and representing information about them. For
example, objects continue to exist when not being
perceived, and children (and dogs) are very likely
“designed” to interpret sensory inputs in terms of
such persistent objects. Moreover, objects usually move
continuously, passing through intermediate points, and
perceiving motion that way may also be innate. What
a child learns about the world is based on its innate
mental structure.”

Thus McCarthy notices in contrast to Turing that
the innate mental structure is not a sheet of blank
paper, but it is very complicated shaped by evolution.
McCarthy tries to design adequate mental structures
including a language of thought. ”This design stance
applies to designing robots, but we also hope it will
help understand universal human mental structures.
We consider what structures would be useful how the
innateness of a few of the structures might be tested
experimentally in humans and animals.” The proposal
was never finished and remained a paper proposal.
Therefore the issue of creating a suitable child machine
is still unsolved. At this time nobody seems working on
this problem.

I tried to combine evolution and learning for automatic
programming in the spirit of John von Neumann (14).
But good results have been obtained only in the sepa-
rate domains, neural networks (25) and optimization by
simulating evolution (11).
The other approach to machine intelligence is still
pursued in a big project. This means coding all
the necessary common sense knowledge into some
computer understandable description. We remind
the reader, that this method was considered as too
inefficient, both by Turing and von Neumann. Von
Neumann even doubted if this method would work
at all. The project was started in 1984 with the name
Cyc, the goal of which was to specify in a well-
designed language common sense knowledge. Cyc is an
artificial intelligence project that attempts to assemble
a comprehensive ontology and database of everyday
common sense knowledge, with the goal of enabling
AI applications to perform human-like reasoning. The
original knowledge base is proprietary, but a smaller
version of the knowledge base, intended to establish
a common vocabulary for automatic reasoning, was
released as OpenCyc under an open source license.

Typical pieces of knowledge represented in the database
are ”Every tree is a plant” and ”Plants die eventually”.
When asked whether trees die, the inference engine can



draw the obvious conclusion and answer the question
correctly. The Knowledge Base (KB) contains over a
million human-defined assertions, rules or common
sense ideas. These are formulated in the language
CycL, which is based on predicate calculus and has a
syntax similar to that of the Lisp programming language.

Much of the current work on the Cyc project continues
to be knowledge engineering, representing facts about
the world by hand, and implementing efficient inference
mechanisms on that knowledge. Increasingly, however,
work at Cycorp involves giving the Cyc system the abil-
ity to communicate with end users in natural language,
and to assist with the knowledge formation process via
machine learning. Currently the knowledge base consists
of

• 3.2 million assertions (facts and rules)
• 280,000 concepts
• 12,000 concept-interrelating predicates

I cannot evaluate Cyc in detail, but despite its huge effort
the success is still uncertain. Up to now Cyc has not been
successfully be used for any broad AI application.

IX. THE PROBLEM OF INITIATIVE OR META-LEARNING

From all the research in this very challenging area I will
only review the work done in connection with neural
networks. Even today learning in neural networks is
typically done ”from scratch” without using previous
knowledge. This follows from the fact that learning
begins from initially random connection weights. A
first step to using previous knowledge was cascade
correlation (CC) (2). It creates a network topology
by recruiting new hidden units into a feed-forward
network in order to reduce the error.

This algorithm has been extended to knowledge-based
cascade correlation (KBCC) which recruits whole
sub-networks that it has already learned, in addition
to the untrained hidden units recruited by CC (16).
KBCC trains connection weights to the inputs of its
existing sub-networks to determine whether there
outputs correlate well with the network’s error on
the problem it is currently learning. The previously
learned networks compete with each other and with
conventional untrained candidate hidden units to be
recruited into the target network learning the current
problem.

The general idea sounds convincing, but for an
implementation a number of difficult decisions have
to be made. If, for instance, all previously learned
sub-networks compete with each other, the learning will
slow down with the number of problems to be learned.
The current results of KBCC are still very preliminary.
In (16) an evaluation is done using only two problems.

In the first setting it is evaluated whether KBCC can
find and use its relevant knowledge in the solution of
a new problem similar to the first one. In the second
setting it is investigated whether KBCC can find and
combine knowledge of components to learn a new, more
complex problem comprised of these components. The
results indicate that it is worthwhile to develop KBCC
further, but it is unclear how KBCC would perform
on larger problems. Thus Turing’s initiative problem
remains unsolved.

X. PROBABILISTIC LOGIC

The theory of probabilistic logic has been fully
developed in the last 20 years. Uttley invented a
conditional probability computer as early as 1958 (19).
The major drawback of his design was that in order
to classify an input of n binary items, the number of
neurons had to be exponential 2n. It took quite a while
to solve this problem and to see the connection of
probabilistic logic to probability theory. A very popular
instance of probabilistic logic are Bayesian networks.

The problem of the exponential explosion has been
solved in the 80’s. For singly connected Bayesian net-
works exact inference is possible in one sweep of Pearl’s
belief propagation algorithm (15). A very interesting
extension for incomplete data is done by the maximum
entropy principle (3). This theory can be seen as a
realization of von Neumann’s prophesy.
Probabilistic logic is now used in many fields. To give
just one example, I have applied Bayesian networks to
population based global optimization (13).

XI. COMPLICATION AND COMPLEXITY

The complication problem formulated by von Neumann
has still not been formulated in a precise scientific
manner. For the reader I restate the problem: ”It is
possible that the connection pattern of the visual brain
itself is the simplest logical expression or definition of
this principle (visual analogy)”. In this section I will
just mention important contributions to the solution
of this problem which might later lead to a scientific
theory. Nearest to the thinking of von Neumann
comes algorithmic complexity (also known as descriptive
complexity, Kolmogorov-Chaitin complexity) (5).

The Kolmogorov complexity of an object such as a piece
of text is a measure of the computational resources
needed to describe the object. To define Kolmogorov
complexity, we must first specify a description language
for strings. Such a description language can be based
on a programming language such as Lisp, C++, or
Java virtual machine byte-code. If P is a program



which outputs a string x, then P is a description of
x. The length of the description is just the length of
P as a character string. In determining the length of
P, the lengths of any subroutines used in P must be
accounted for. The length of any integer constant n
which occurs in the program P is the number of bits
required to represent n, that is (roughly) log2n. We could
alternatively choose an encoding for Turing machines
(TM), where an encoding is a function which associates
to each TM M a bit-string < M >. If M is a TM which
on input w outputs string x, then the concatenated
string < M >, w is a description of x. For theoretical
analysis, this approach is more suited for constructing
detailed formal proofs and is generally preferred in the
research literature. Note that Kolmogorov complexity is
valid for a single string only.

We cite some important results. Let K(s) denote the
complexity of string s. Obviously K(s) cannot be too
much larger than the string itself.

K(s) ≤ |s| + c

A string s is compressible by c if it has a description
whose length does not exceed |s| − c. This is equivalent
to saying K(s) ≤ |s| − c. Otherwise s is incompressible
by c. A string incompressible by one is said to be
simply incompressible; by the pigeonhole principle,
incompressible strings must exist, since there are 2n bit
strings of length n but only 2n−1 shorter strings, that
is strings of length n − 1. For the same reason, ”most”
strings are complex in the sense that they cannot be
significantly compressed: K(s) is not much smaller than
|s|, the length of s in bits. To make this precise, fix a
value of n. There are 2n bit strings of length n. The
uniform probability distribution on the space of these
bit strings assigns to each string of length exactly n
equal weight 2−n.

Theorem 1: With the uniform probability distribution
on the space of bit strings of length n, the probability that
a string is incompressible by c is at least 1−2−c+1+2−n.

This means that ”most” strings cannot be compressed.
Thus in this limited domain (just a single string) this
result is almost the opposite to the conjecture of von
Neumann. Kolmogorov complexity has been extended
to sets of strings and functions. In (21) a generalization of
Kolmogorov complexity is described which unifies some
of the most important principles of machine learning,
like the minimum description length MDL, Occam’s ra-
zor and Shannon’s entropy. This topic is far too difficult
to be discussed here.

XII. CONCLUSION AND OUTLOOK

I hope the reader is as astonished as I was when
reading the papers of Turing and von Neumann.

In my opinion they have discussed all aspects and
components which seem necessary to develop human
like artificial intelligence. Both researchers had no doubts
that any problem which can be precisely formulated
can also be programmed. Turing concentrated his
design for machine intelligence on the construction
of a child machine and learning. Von Neumann had
doubts that it will be possible to construct machine
intelligence by programming or by learning. It leads
to the curse of infinite enumeration. Therefore he
asked the bold question if it is possible that automata
could develop to higher complexity without too much
human intervention. He succeeded to construct a
self-reproducing automata, but did not have time to
investigate the next step, namely simulating evolution
to breed automata of higher complexity.

Turing identified the following major problems on the
road to human like machine intelligence

• What are the minimal requirements for a child
machine to allow efficient learning?

• How can learning be made more efficient than using
punishment and reward?

• What has to be done that the machine actively learns
using initiative?

Von Neumann formulated the following problems
• The lack of a logical theory of automata
• The limited complexity of artificial automata
• A rigorous concept of what constitutes ”complica-

tion”
From these problems only the logical theory is solved,
the other five are still open. But for the construction
of complex automata the theoretical results are often
negative if we require that the ”chains of reasoning”
(von Neumann) are finite, e.g. polynomial. A major
achievement has been the precise formulation of
probabilistic logic. Despite a number of efforts there
has been no progress in extending von Neumann’s self-
reproducing automata with some evolution mechanism
so that they become substantial more complex.

In the sixty years after the ground braking work of
Turing and von Neumann a lot of impressive systems
have been built which solve precisely defined problems.
These are too many to cite here. But there is no system
in sight which comes near to passing the Turing test.
In current competitions the machine is identified after
a few questions. What might be the reason for the
slow progress? The simple answer is that there has
been no substantial progress to solve the remaining five
problems identified by Turing and von Neumann.

A machine with human like intelligence needs common
sense reasoning, the sort of reasoning we would expect
a child easy to do. The relative paucity of results in



this field does not reflect the considerable effort that
has been expended, starting with McCarthy’s paper
”Programs with Common Sense” (6)4. Forty years after
the first paper McCarthy notices that the knowledge
needed to solve a commonsense reasoning problem
is typically much more extensive and general than
the knowledge needed to solve difficult scientific
problems in mathematics or physics (7). There the
knowledge is bounded. In contrast, there are no a
priori limitations to the facts that are needed to solve
commonsense problems: the given information may
be incomplete; one may have to use approximate
concepts and approximate theories; and one will need
some ability to reflect upon one’s own reasoning process.

What recommendations I can give to young scientists
working in this area? First, try to make contributions to
the open problems before trying a general architecture.
Most important topics are higher learning methods like
meta-learning or even transfer learning, Turing called
this providing the machine with initiative. Second, von
Neumann’s proposal to start with self-reproducing au-
tomata is also worthwhile to investigate further. But here
I am very sceptical that this way will ever lead to human
like intelligence. But it will certainly give new insights
to biological problems.
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