Strategy Adaptation
by Competing Subpopulations

Dirk Schlierkamp-Voosen * and Heinz Miihlenbein

GMD Schlofl Birlinghoven
D-53754 Sankt Augustin, Germany

Abstract. The breeder genetic algorithm BGA depends on a set of con-
trol parameters and genetic operators. In this paper it is shown that
strategy adaptation by competing subpopulations makes the BGA more
robust and more efficient. Each subpopulation uses a different strategy
which competes with other subpopulations. Numerical results are pre-
sented for a number of test functions.

Keywords: breeder genetic algorithm, strategy adaptation, competition,
multiresolution search

1 Introduction

Many evolutionary algorithms depend on a set of control parameters. Often the
optimal setting of the parameter depends on the particular application. Moreover
the optimal control parameters may be different at the start of the run and at
the end where the individuals are very similar to each other.

Basically two approaches have been pursuit to solve the above problem. In
the first approach some externally specified schedule is used. The schedule may
depend for instance on the time, measured in number of generations. This ap-
proach is derived from simulated annealing. The temperature is set at a large
initial value, then it is continuously reduced. In genetic algorithms this approach
has been tried for changing the mutation rate or the selection [4].

In the second approach the mechanisms of evolution itself are used to adapt
the control parameters. The adaptation is not driven by an external schedule but
by the internal forces of evolution itself. This approach is successfully used in
evolution strategies [3]. In evolution strategies the adaptation of control param-
eters is done in the same manner as the adaptation of the parameters defining
the fitness functions [1].

The crucial question of the second approach concerns the level where the
adaptation is done. It may be the level of the individual as it is done in evolu-
tion strategies. But also the level of subpopulations or the level of populations

* schlierkamp-voosen@gmd.de
In: Parallel Problem Solving from Nature (PPSN III), pages 199-208, Springer,
Jerusalem, October 1994

can be used. The level implicitly defines the time interval when the adaptation
takes place. If for instance populations are used for adaptation, then a minimum
number of generations is needed for evaluating the populations. In contrast,
individuals are evaluated after each generation.

In this paper we present an adaptation based on subpopulations. It simu-
lates subpopulations competing for the same food. The outline of the paper is
as follows. In section 2 the most important control parameters of the breeder
genetic algorithm BGA are summarized. In section 3 the competition scheme
is explained. The performance of the competition is shown in section 4 for uni-
modal functions. In section 5 the efficiency and the robustness of the adaptation
by competition is demonstrated for multimodal functions.

2 The BGA for Continuous Parameter Optimization
Let an unconstrained optimization problem be given on a domain D C IR"

min(F(x)) e <z;<b i=1,..,n. (1)

The breeder genetic algorithm BGA was designed to solve the above prob-
lem [6]. The BGA depends on some control parameters which we summarize
shortly. The selection is done by truncation selection, also called mass selection
by breeders. The T'% best of the individuals are selected as parents and then
mated randomly.

Discrete recombination
Let x = (#1,...,2,) and y = (y1,...,Yn) be the parent strings. Then the
offspring z = (z1, ..., z,) is computed by

zi = {xi} or {yi} (2)
x; or y; are chosen with probability 0.5.

BGA mutation

A variable z; is selected with probability p,, for mutation. The BGA normally

uses py, = 1/n. At least one variable will be mutated. A value out of an interval

[—range;, range;] is added to the selected variable. range; defines the mutation

range. It is normally set to 0.5 times the domain of definition of variable ;.
Given z; a new value z; is computed according to

z; = x; £ range; - 6 (3)

The 4 or — sign is chosen with probability 0.5. é is computed from a distribution
which prefers small values. This is realized as follows

k-1
5= a; 27" a;€{0,1}
i=0
k 1s called the precision constant. Before starting the mutation we set o; = 0.

Then each «; is flipped to 1 with probability ps = 1/k. Only «; = 1 contributes

to the sum. On the average there will be just one «; with value 1, say «;. Then
6 1s given by '
§=277

This mutation scheme 1s discrete. For a number of reasons we now use a
continuous mutation scheme where 6 18 computed as follows

s=27F ael0,1]
The discussion of this scheme 1s outside the scope of this paper.

BGA line recombination

The BGA line recombination uses components from both, mutation and recom-
bination. It creates new points in a direction given by the two parent points. The
placement of the point is done by the BGA mutation scheme. It works as follows:
Let x = (21,...,25) and y = (y1, ..., Yn) be the parent strings with x being the
one with better fitness. Then the offspring z = (21, ..., z,) is computed by

Yi — &
e~y W
The — sign is chosen with probability 0.9. The offspring is placed more often

in the descending direction.

The rationale behind the three operators is as follows. The BGA mutation
operator is able to generate any point in the hypercube with center x defined by
z; range;. But it tests much more often in the neighborhood of x. In the above
standard setting, the mutation operator is able to locate the optimal z; up to a
precision of range; - 27=1) Discrete recombination is a breadth search. It uses
the information contained in the two parent points. The BGA line recombination
tries new points in a direction defined by the parent points.

In [6] we have proven that a BGA with popsize N =1 (1 parent, 1 offspring,
the better of the two survives) using only mutation has approximate linear order
of convergence for unimodal functions.

2z; = x; = range; - 6

Theorem 1. Given a point with distance range; - 2=*~1) < r < range; to the
optimum, then the expected progress E(n,r) of the BGA in n dimensions is
bounded by
1 E(n,r) 1
— < < — 5
2kn — r — kn (5)

This theorem shows the following problem. The progress depends on k. The
larger k, the smaller the progress. But in order to locate the optimum with a
given precision e, the value range; - 2~*~1) has to be less than e. Therefore a
large k may be necessary.

We show the dependence of the BGA on the precision constant & in Fig. 1.
The task is to minimize the hypersphere of dimension n = 100.

Fo(z) = Z x?

Note that the best fitness is displayed on a logarithmic scale. The simulations
have been done with three precision values & = 4,8, and 16. For £ = 16 one
observes for quite a time the predicted linear order of convergence. Small values
of k£ have a better progress at the beginning, but they are able to locate the best
fitness to a certain precision only.

Next we summarize the mathematical properties of discrete recombination.
A detailed investigation can be found in [7]. Discrete recombination has also
linear order of convergence in number of generations versus fitness until near
the equilibrium. Equilibrium is defined as all genotypes of the population be-
ing equal. The fitness value achieved at equilibrium depends on the size of the
population and the truncation selection threshold.

In Fig. 2 three simulation runs are shown. One clearly observes the linear
order of convergence until near the equilibrium. The rate of progress is larger for
a small truncation threshold, but the population converges to a higher fitness
value.

100 100 T
k=16 -— & N=4000, T=0.06 —-—
Y k=8 -+ “g N=4000, T=0.25 -+
% k=4 o o N=500, T=0.25 -&
10 % N,
w
% 10 ¢
.
1F

£ A - £ -

£ o1 . - —m £ 1

& &

0.01 RS
— 01
0001 ¢ T " A N
0.0001 . L L 0.01 - - . .
0 5000 10000 15000 20000 0 20 40 60 80 100
Generation Generation

Fig. 1. BGA mutation; hypersphere Fig.2. Discrete recombination, hyper-
n = 100; precision k = 16,8, and 4. sphere n = 100. The gradient of the best

fitness achieved depends on the truncation
threshold 7' for selection. For N = 4000
T =0.25 and T' = 0.06 was used.

The computational efficiency of mutation and recombination can be com-
pared by changing the abscissa from number of generations to number of function
evaluations. It is easily seen that mutation is by far more efficient. This result
indicates that recombination i1s not an efficient search method to determine the
minimum of a quadratic function. We will later show that recombination is an
important search operator for determining promising search areas of multimodal
functions.

The result of the simulations can be summarized as follows: The efficiency of
the BGA mutation operator depends on the precision constant k. The efficiency
of discrete recombination depends on the size of the population and the truncation
threshold T.

The question now arises how to combine recombination and mutation in an
optimal way and how to automatically control the precision constant k& of the

BGA mutation scheme. We will use for the adaptation the concept of competition
between subpopulations. This will be described in the next section.

3 Competition between Subpopulations

The adaptation of parameters controlling evolutionary algorithms can be done
on different levels, for example the level of the individuals, the level of subpopula-
tions or the level of populations. Béck et al. [2] have implemented the adaptation
of strategy parameters on the level of the individual. The strategy parameters
of the best individuals are recombined, giving the new stepsize for the mutation
operator in the next generation. Herdy [5] uses competition on the population
level. In this case whole populations are evaluated at certain generations. The
strategies of the successful populations proliferate, the strategies of populations
with bad performance die out. They are replaced by the successful strategies and
afterwards modified by genetic operators. There is no exchange of individuals
between populations.

Our adaptation lies between these two extreme cases. The competition is
done between subpopulations (groups). The total number of all individuals is
fixed whereas the size of a single group varies. Our approach simulates the
population changes of species which compete for the same food. Well adapted
species increase whereas poorly adapted species decrease. This follows Gausse’s
principle: "Two species with identical requirements cannot co-exist in a habitat.’
Occasionally individuals with a good fitness migrate to other groups.

The competition requires a quality criterion to rate a group, a gain crite-
rion to reward or punish the groups, an evaluation intervel, and a migration
wnterval. The evaluation interval gives each strategy the chance to demonstrate
its performance in a certain time window. By occasional migration of the best
individuals groups which performed badly are given a better chance for the next
competition. The sizes of the groups have a lower limit. Therefore no strategy is
lost.

The quality criterion is based on the fitness of the best individual of the
group. To avoid an inefficient oscillation of group sizes we had to extend the
quality criterion. For the evaluation information about the last 10 competitions
is used. The group with the best individual gets best_ind = 1, for all other groups
best_ind 1s set to 0.

The following formula describes the quality of group 7. £ = 0 denotes the
current competition, k = 1 the previous one, etc.

quality(i) = Z (1015 k . best_indk(i)) (6)

9

k=0
The gain criterion defines how to modify the population size of each group

according to its quality. The size of the group with the best quality increases,

all other groups are decreased.

If group ¢ has the best quality, then
G-1 ;
. . NI
=N+ D ?t (7)
j=0,)#i
where N} denotes the size of group i and G denotes the number of groups. All
other groups are reduced if their size is greater than the minimal size N,y

: N
Nipp =N =4 J#i (8)
This gain criterion leads to a fast adaptation of the group sizes. Each group
looses the same percentage of individuals.

The evaluation interval is normally set to 4, the migration interval to

16.

4 Competition for Unimodal Functions

The behavior of the BGA competition scheme can best be explained with the
unimodal hypersphere function. In Fig. 3 four groups with different mutation
ranges compete. The mutation intervals are defined in Table 1.

Table 1. Range and mutation steps for precision constant & = 7 used.

group| range |max. step|min. step

0 15.120000{10.240000]0.1600000
0.160000| 0.320000{0.0050000
0.005000{ 0.010000{0.0001560
0.000156| 0.000312{0.0000049

W B =

The different mutation ranges define a multiresolution search. Group 0 is
doing large mutation steps and group 3 the smallest. The group with the largest
range was initialized with 52 individuals, all the other with the minimum popsize
of 4. In the rightmost figure one clearly observes the migration interval which
was set to mig = 32 for reasons of presentation. At these intervals migration
takes place. Therefore the best fitness of the groups becomes equal.

In Fig. 4 the distribution of the population sizes of the four groups is shown.

First the group with the largest mutation steps dominates, then the group with
the second largest mutation steps takes over and so on. The change of the sizes
of the groups correspond to the four waves which can be seen in Fig. 3. In Fig.
5 the quality criterion used for the competition is shown.
In Fig. 6 the competition run is compared to a run without competition. The
BGA without competition was initialized with a precision constant of k = 22.
This precision is comparable to the competition run. Until generation 700 both
runs are equally effective. Afterwards the competition run is more effective. This
behavior is predicted by the theory.

BestFitness

0.001 ¢

0.0001

1e-05

1e-06

1le-07

.
0 200 400 600 800 1000 1200 1400
Generation

BestFitness

1000

r=0.000156

L L L h
150 200 250 300 350
Generation

L
0 50 100

Fig. 3. Competition between 4 groups using different mutation ranges. The precision

isk="7.

70 T T T T T T T
=512 —
=016 -

60 r=0.005 - 4

r=0.000156

50

o 40f il
s i
7 :
2 i
o i
& 30+ H

20

10 +

0

0 200 400 600 800 1000 1200 1400

Generation

Fig.4. Distribution of the popula-
tion sizes; first the group with the
largest mutation steps is successful.
At the end the group with the small-
est mutation steps has taken over.

Quality

r=0.000156

1
0 200 400 600 800 1000 1200 1400
Generation

Fig.5. Quality criterion which af-
fected the variation of the population
sizes shown in Fig. 4.

5 Multiresolution Search for Multimodal Functions

The BGA is intended to solve multimodal optimization problems. In [6] we have
shown that the standard BGA using mutation and discrete recombination has
also linear order of convergence for some of the popular multimodal test func-
tions. The scaling constants are specific to the fitness function and the precision
constant k of the BGA. They are less than for unimodal functions. The reason for
this behavior can easily be explained. Most of the test functions have a global
structure which is similar to the hypersphere. Therefore the multimodality of
the function can be considered as noise for the BGA. The multimodality only
reduces the probability of creating better offspring.

100 r

G4,N16 —-—

w0l % G1,NB4 -+]

01 F [R

0.01 F S8, 4

BestFitness

0.001 v, ki

0.0001 F %, E
X .
e
1e-05 o
T,
e
o

1le-06 +

1le-07 . L L
0 500 1000 1500 2000 2500
Generation

Fig. 6. Competition vs. normal BGA run; For fine tuning competition is more effective.
Note the waves of the competition run.

We have pointed out in [6] that the local minima of these test functions are
regularly distributed. For these classes of problems discrete recombination i1s an
especially efficient operator. Therefore these test functions are not a challenge
for the BGA. For comparisons reason we give some results for the most difficult
of these test functions, this is Griewank’s function. We will later investigate two
functions which we believe are more typical for real life applications.

n 2

€T; - Ty
Fs(z) = Z 000~ Hcos (72) +1 —600<az; <600 (9)
1

1

In Fig. 7 a competition run and a run without competition is shown for
Griewank’s function of dimension n = 100. Both runs used in addition to mu-
tation discrete recombination. The run without competition is slightly more
effective. But the BGA with competition is more robust. The BGA without
competition converged in 9 of 10 cases to the second minima.

We will now turn to optimization problems where the local minima are dis-
tributed more randomly. In [9] these kind of test functions are also proposed
as a common benchmark for global optimization problems. We have used the
following test function originally proposed by Rechenberg.

Fiao(z) = i ((100 — i) - exp (—ZH: (“‘f%*’“)z)) (10)

i=0 k=1
where z; = (322,21 +13(i+ 1))mod 31, 2z =1, —100<=z; <100

The function consists of 21 exponential mountains, whose positions are ran-
domly distributed. o is used to vary the shape of the single hills. Due to limi-
tations of space we have to summarize the simulation results. Competition runs

100 T

G1,N512 —-—

10 B\ G4, N128 -+]

1r 4

01 F El
?

o 0.01¢r E
£
z

2 0.001 F E
)

0.0001 F El
1le-05 El
1le-06 - El

h
1e-07 L e
0 100 200 300 400 500 600
Generation

Fig.7. Griewangk’s function (F3) with and without competition. Both runs consist of
512 individuals. For the competition they were distributed into four groups.

locate the attractor region of the global optimum much faster than runs without
competition. The reason is that the group performing large steps is able to locate
the attractor regions very fast. In the final stage of the search the group with
the smallest steps locates the optimum with high precision.

A real challenge for any continuous function optimization program is to follow
a steep curved valley which 1s only slightly decreasing. An example is the function
of Rosenbrock [8]. In [10] the two dimensional function was extended to a n-
dimensional function.

n

Fio(w) =Y (100(zig1 — 2])* + (1 — 2:)?) —5.12< ; < 5.12 (11)

i=1

For these kind of functions the BGA mutation scheme is not efficient. Line
recombination seems much more promising. With line recombination first the
direction 1s computed, then the mutation step. In Fig. 8 a competition is shown
between discrete recombination and line recombination. One observes that first
discrete recombination is exploring the search space. For a long time the popu-
lation stays at the saddle point 1, then after the group using line recombination
has taken over, 1t finally is able to leave the saddle point.

1000

BestFitness
PopSize

.)
- i
ettt

100 0 50 100 150 200
Generation Generation

Fig.8. Competition between discrete recombination (DR) and line recombination
(BLR) for Rosenbrock’s function of dimension 4. BLR takes over at generation 120.

6 Conclusion

Competition between subpopulations using different strategies makes the BGA
search more effective and robust. The method presented in this paper is a first
step. The strategies have to be defined at the start of the run, only their relative
frequency is changed by competition. The user of the BGA has the responsibility
to define a set of reasonable strategies for the given problem. The question to
be investigated in the future is how robust the competition is in respect to the
parameters used for the competition. All runs reported in this paper have been
done with the same set of parameters.

References

1. Thomas Back. Self-Adaption in Genetic Algorithms. In Francisco Varela and Paul
Bourgine, editors, Towards a Practice of Autonomous Systems, pages 263-271,
1992.

2. Thomas Back and Hans-Paul Schwefel. A Survey of Evolution Strategies. In
Proceedings of the Fourth International Conference of Genetic Algorithms, pages
2-9, San Diego, 1991. ICGA.

3. Thomas Back and Hans-Paul Schwefel. An Overview of Evolutionary Algorithms
for Parameter Optimization. Evolutionary Computation, 1:1-24, 1993.

4. Terence C. Fogarty. Varying the probability of Mutation in the Genetic Algorithm.
In J. David Schaffer, editor, Proceedings of the Third International Conference of
Genetic Algorithms, pages 104-109. Morgan-Kaufman, 1989.

5. Michael Herdy. Reproductive Isolation as Strategy Parameter in Hierarchical Or-
ganized Evolution Strategies. In PPSN 2 Bruzelles, pages 207-217, September
1992.

6. Heinz Miihlenbein and Dirk Schlierkamp-Voosen. Predictive Models for the
Breeder Genetic Algorithm: Continuous Parameter Optimization. FEvolutionary
Computation, 1(1):25-49, 1993.

7. Heinz Muhlenbein and Dirk Schlierkamp-Voosen. The science of breeding and its
application to the breeder genetic algorithm. Evolutionary Computation, 1(4):335—
360, 1994.

8. H. H. Rosenbrock. An automatic method for finding the greatest or least value of
a function. The Computer Journal, 3(3):175-184, 10 1960.

9. Fabio Schoen. A Wide Class of Test Functions for Global Optimization. Journal
of Global Optimization, 3(2):133-137, 1993.

10. H.-P. Schwefel. Numerical Optimization of Computer Models. Wiley, Chichester,
1981.

