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Abstract� The breeder genetic algorithm BGA depends on a set of con�
trol parameters and genetic operators	 In this paper it is shown that
strategy adaptation by competing subpopulations makes the BGA more
robust and more e
cient	 Each subpopulation uses a di�erent strategy
which competes with other subpopulations	 Numerical results are pre�
sented for a number of test functions	
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� Introduction

Many evolutionary algorithms depend on a set of control parameters� Often the
optimal setting of the parameter depends on the particular application�Moreover
the optimal control parameters may be di�erent at the start of the run and at
the end where the individuals are very similar to each other�

Basically two approaches have been pursuit to solve the above problem� In
the �rst approach some externally speci�ed schedule is used� The schedule may
depend for instance on the time� measured in number of generations� This ap�
proach is derived from simulated annealing� The temperature is set at a large
initial value� then it is continuously reduced� In genetic algorithms this approach
has been tried for changing the mutation rate or the selection �	
�

In the second approach the mechanisms of evolution itself are used to adapt
the control parameters� The adaptation is not driven by an external schedule but
by the internal forces of evolution itself� This approach is successfully used in
evolution strategies ��
� In evolution strategies the adaptation of control param�
eters is done in the same manner as the adaptation of the parameters de�ning
the �tness functions ��
�

The crucial question of the second approach concerns the level where the
adaptation is done� It may be the level of the individual as it is done in evolu�
tion strategies� But also the level of subpopulations or the level of populations
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can be used� The level implicitly de�nes the time interval when the adaptation
takes place� If for instance populations are used for adaptation� then a minimum
number of generations is needed for evaluating the populations� In contrast�
individuals are evaluated after each generation�

In this paper we present an adaptation based on subpopulations� It simu�
lates subpopulations competing for the same food� The outline of the paper is
as follows� In section 
 the most important control parameters of the breeder
genetic algorithm BGA are summarized� In section � the competition scheme
is explained� The performance of the competition is shown in section 	 for uni�
modal functions� In section � the e�ciency and the robustness of the adaptation
by competition is demonstrated for multimodal functions�

� The BGA for Continuous Parameter Optimization

Let an unconstrained optimization problem be given on a domain D � IRn

min�F �x�� ai � xi � bi i � �� ���� n � ���

The breeder genetic algorithm BGA was designed to solve the above prob�
lem ��
� The BGA depends on some control parameters which we summarize
shortly� The selection is done by truncation selection� also called mass selection
by breeders� The T� best of the individuals are selected as parents and then
mated randomly�

Discrete recombination

Let x � �x�� � � � � xn� and y � �y�� � � � � yn� be the parent strings� Then the
o�spring z � �z�� � � � � zn� is computed by

zi � fxig or fyig �
�

xi or yi are chosen with probability ����

BGA mutation

A variable xi is selected with probability pm for mutation� The BGA normally
uses pm � ��n� At least one variable will be mutated� A value out of an interval
��rangei� rangei
 is added to the selected variable� rangei de�nes the mutation

range� It is normally set to ��� times the domain of de�nition of variable xi�
Given xi a new value zi is computed according to

zi � xi � rangei � � ���

The � or � sign is chosen with probability ���� � is computed from a distribution
which prefers small values� This is realized as follows

� �
k��X
i��

�i � 
�i �i � f�� �g

k is called the precision constant� Before starting the mutation we set �i � ��
Then each �i is �ipped to � with probability p� � ��k� Only �i � � contributes



to the sum� On the average there will be just one �i with value �� say �j� Then
� is given by

� � 
�j

This mutation scheme is discrete� For a number of reasons we now use a
continuous mutation scheme where � is computed as follows

� � 
�k�� � � ��� �


The discussion of this scheme is outside the scope of this paper�

BGA line recombination

The BGA line recombination uses components from both� mutation and recom�
bination� It creates new points in a direction given by the two parent points� The
placement of the point is done by the BGA mutation scheme� It works as follows�
Let x � �x�� � � � � xn� and y � �y�� � � � � yn� be the parent strings with x being the
one with better �tness� Then the o�spring z � �z�� � � � � zn� is computed by

zi � xi � rangei � � � yi � xi
kx � yk �	�

The � sign is chosen with probability ���� The o�spring is placed more often
in the descending direction�

The rationale behind the three operators is as follows� The BGA mutation
operator is able to generate any point in the hypercube with center x de�ned by
xi�rangei� But it tests much more often in the neighborhood of x� In the above
standard setting� the mutation operator is able to locate the optimal xi up to a
precision of rangei � 
��k���� Discrete recombination is a breadth search� It uses
the information contained in the two parent points� The BGA line recombination
tries new points in a direction de�ned by the parent points�

In ��
 we have proven that a BGA with popsize N � � �� parent� � o�spring�
the better of the two survives� using only mutation has approximate linear order
of convergence for unimodal functions�

Theorem�� Given a point with distance rangei � 
��k��� � r � rangei to the

optimum� then the expected progress E�n� r� of the BGA in n dimensions is

bounded by
�


kn
� E�n� r�

r
� �

kn
���

This theorem shows the following problem� The progress depends on k� The
larger k� the smaller the progress� But in order to locate the optimum with a
given precision �� the value rangei � 
��k��� has to be less than �� Therefore a
large k may be necessary�

We show the dependence of the BGA on the precision constant k in Fig� ��
The task is to minimize the hypersphere of dimension n � ����

F��x� �
nX
i

x�i



Note that the best �tness is displayed on a logarithmic scale� The simulations
have been done with three precision values k � 	� �� and ��� For k � �� one
observes for quite a time the predicted linear order of convergence� Small values
of k have a better progress at the beginning� but they are able to locate the best
�tness to a certain precision only�

Next we summarize the mathematical properties of discrete recombination�
A detailed investigation can be found in ��
� Discrete recombination has also
linear order of convergence in number of generations versus �tness until near
the equilibrium� Equilibrium is de�ned as all genotypes of the population be�
ing equal� The �tness value achieved at equilibrium depends on the size of the
population and the truncation selection threshold�

In Fig� 
 three simulation runs are shown� One clearly observes the linear
order of convergence until near the equilibrium� The rate of progress is larger for
a small truncation threshold� but the population converges to a higher �tness
value�
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Fig� �� Discrete recombination� hyper�
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threshold T for selection	 For N � ����
T � ���� and T � ���� was used	

The computational e�ciency of mutation and recombination can be com�
pared by changing the abscissa from number of generations to number of function
evaluations� It is easily seen that mutation is by far more e�cient� This result
indicates that recombination is not an e�cient search method to determine the
minimum of a quadratic function� We will later show that recombination is an
important search operator for determining promising search areas of multimodal
functions�

The result of the simulations can be summarized as follows�The e�ciency of

the BGA mutation operator depends on the precision constant k� The e�ciency

of discrete recombination depends on the size of the population and the truncation

threshold T �
The question now arises how to combine recombination and mutation in an

optimal way and how to automatically control the precision constant k of the



BGAmutation scheme�We will use for the adaptation the concept of competition
between subpopulations� This will be described in the next section�

� Competition between Subpopulations

The adaptation of parameters controlling evolutionary algorithms can be done
on di�erent levels� for example the level of the individuals� the level of subpopula�
tions or the level of populations� B�ack et al� �

 have implemented the adaptation
of strategy parameters on the level of the individual� The strategy parameters
of the best individuals are recombined� giving the new stepsize for the mutation
operator in the next generation� Herdy ��
 uses competition on the population
level� In this case whole populations are evaluated at certain generations� The
strategies of the successful populations proliferate� the strategies of populations
with bad performance die out� They are replaced by the successful strategies and
afterwards modi�ed by genetic operators� There is no exchange of individuals
between populations�

Our adaptation lies between these two extreme cases� The competition is
done between subpopulations �groups�� The total number of all individuals is
�xed whereas the size of a single group varies� Our approach simulates the
population changes of species which compete for the same food� Well adapted
species increase whereas poorly adapted species decrease� This follows Gausse�s
principle� �Two species with identical requirements cannot co�exist in a habitat��

Occasionally individuals with a good �tness migrate to other groups�

The competition requires a quality criterion to rate a group� a gain crite�

rion to reward or punish the groups� an evaluation interval� and a migration

interval� The evaluation interval gives each strategy the chance to demonstrate
its performance in a certain time window� By occasional migration of the best
individuals groups which performed badly are given a better chance for the next
competition� The sizes of the groups have a lower limit� Therefore no strategy is
lost�

The quality criterion is based on the �tness of the best individual of the
group� To avoid an ine�cient oscillation of group sizes we had to extend the
quality criterion� For the evaluation information about the last �� competitions
is used� The group with the best individual gets best ind � �� for all other groups
best ind is set to ��

The following formula describes the quality of group i� k � � denotes the
current competition� k � � the previous one� etc�

quality�i� �
�X

k��

�
��� k

��
� best indk�i�

�
���

The gain criterion de�nes how to modify the population size of each group
according to its quality� The size of the group with the best quality increases�
all other groups are decreased�



If group i has the best quality� then

N i
t�� � N i

t �
G��X

j���j ��i

N j
t

�
���

where N i
t denotes the size of group i and G denotes the number of groups� All

other groups are reduced if their size is greater than the minimal size Nmin�

N j
t�� � N j

t �
N j
t

�
j �� i ���

This gain criterion leads to a fast adaptation of the group sizes� Each group
looses the same percentage of individuals�

The evaluation interval is normally set to 	� the migration interval to
���

� Competition for Unimodal Functions

The behavior of the BGA competition scheme can best be explained with the
unimodal hypersphere function� In Fig� � four groups with di�erent mutation
ranges compete� The mutation intervals are de�ned in Table ��

Table �� Range and mutation steps for precision constant k � � used	

group range max	 step min	 step

� �	������ ��	������ �	�������
� �	������ �	������ �	�������
� �	������ �	������ �	�������
� �	������ �	������ �	�������

The di�erent mutation ranges de�ne a multiresolution search� Group � is
doing large mutation steps and group � the smallest� The group with the largest
range was initialized with �
 individuals� all the other with the minimumpopsize
of 	� In the rightmost �gure one clearly observes the migration interval which
was set to mig � �
 for reasons of presentation� At these intervals migration
takes place� Therefore the best �tness of the groups becomes equal�

In Fig� 	 the distribution of the population sizes of the four groups is shown�
First the group with the largest mutation steps dominates� then the group with
the second largest mutation steps takes over and so on� The change of the sizes
of the groups correspond to the four waves which can be seen in Fig� �� In Fig�
� the quality criterion used for the competition is shown�
In Fig� � the competition run is compared to a run without competition� The
BGA without competition was initialized with a precision constant of k � 

�
This precision is comparable to the competition run� Until generation ��� both
runs are equally e�ective� Afterwards the competition run is more e�ective� This
behavior is predicted by the theory�
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� Multiresolution Search for Multimodal Functions

The BGA is intended to solve multimodal optimization problems� In ��
 we have
shown that the standard BGA using mutation and discrete recombination has
also linear order of convergence for some of the popular multimodal test func�
tions� The scaling constants are speci�c to the �tness function and the precision
constant k of the BGA� They are less than for unimodal functions� The reason for
this behavior can easily be explained� Most of the test functions have a global
structure which is similar to the hypersphere� Therefore the multimodality of
the function can be considered as noise for the BGA� The multimodality only
reduces the probability of creating better o�spring�
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Note the waves of the competition run	

We have pointed out in ��
 that the local minima of these test functions are
regularly distributed� For these classes of problems discrete recombination is an
especially e�cient operator� Therefore these test functions are not a challenge
for the BGA� For comparisons reason we give some results for the most di�cult
of these test functions� this is Griewank�s function� We will later investigate two
functions which we believe are more typical for real life applications�

F	�x� �
nX
�

x�i
	���

�
nY
�

cos

�
xip
i

�
� � � ��� � xi � ��� ���

In Fig� � a competition run and a run without competition is shown for
Griewank�s function of dimension n � ���� Both runs used in addition to mu�
tation discrete recombination� The run without competition is slightly more
e�ective� But the BGA with competition is more robust� The BGA without
competition converged in � of �� cases to the second minima�

We will now turn to optimization problems where the local minima are dis�
tributed more randomly� In ��
 these kind of test functions are also proposed
as a common benchmark for global optimization problems� We have used the
following test function originally proposed by Rechenberg�

F���x� �
��X
i��

�
����� i� � exp

�
�

nX
k��

�
xk � z
��i�k

�

����
����

where zj � ��
 � zj�� � ���i� ���mod ��� z� � �� � ��� � xi � ���

The function consists of 
� exponential mountains� whose positions are ran�
domly distributed� � is used to vary the shape of the single hills� Due to limi�
tations of space we have to summarize the simulation results� Competition runs
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Fig� 	� Griewangk�s function �F�� with and without competition	 Both runs consist of
��� individuals	 For the competition they were distributed into four groups	

locate the attractor region of the global optimummuch faster than runs without
competition� The reason is that the group performing large steps is able to locate
the attractor regions very fast� In the �nal stage of the search the group with
the smallest steps locates the optimum with high precision�

A real challenge for any continuous function optimization program is to follow
a steep curved valley which is only slightly decreasing� An example is the function
of Rosenbrock ��
� In ���
 the two dimensional function was extended to a n�
dimensional function�

F���x� �
nX
i��

�
����xi�� � x�i �

� � ��� xi�
�
� � ���
 � xi � ���
 ����

For these kind of functions the BGA mutation scheme is not e�cient� Line
recombination seems much more promising� With line recombination �rst the
direction is computed� then the mutation step� In Fig� � a competition is shown
between discrete recombination and line recombination� One observes that �rst
discrete recombination is exploring the search space� For a long time the popu�
lation stays at the saddle point �� then after the group using line recombination
has taken over� it �nally is able to leave the saddle point�
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� Competition between discrete recombination �DR� and line recombination
�BLR� for Rosenbrock�s function of dimension �	 BLR takes over at generation ���	

� Conclusion

Competition between subpopulations using di�erent strategies makes the BGA
search more e�ective and robust� The method presented in this paper is a �rst
step� The strategies have to be de�ned at the start of the run� only their relative
frequency is changed by competition� The user of the BGA has the responsibility
to de�ne a set of reasonable strategies for the given problem� The question to
be investigated in the future is how robust the competition is in respect to the
parameters used for the competition� All runs reported in this paper have been
done with the same set of parameters�
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