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Abstract

This paper contains an informal discussion about
how to synthesize reasonable hypotheses from
data. This is a fundamental problem for any sy-
stem acting in the real world. The problem con-
sists of three interconnected subproblems: fitting
the past data to a hypothesis (model), selecting
promising new data in order to increase the vali-
dity of the hypothesis, and selecting a hypothesis
in a class of hypotheses (models). We argue that
molecular electronics may be important for the
development of such systems. First, it provides
the computing power needed for such systems.
Second, it can help in defining a new computa-
tional model urgently needed for the design of an
artificial systems synthesizing hypotheses about
processes of the real world.

1 Introduction

With the introduction of computers, automata
have been playing a continuously increasing role
in the natural sciences. In this paper I focus on
special automata called learning systems. A lear-
ning system has a learning procedure by which it
can develop methods that cannot be deduced tri-
vially from its learning procedure. The learning
system tries out hypotheses (methods) and se-
lects the better ones. It has a priori a well defined
universe of hypotheses from which it must choose
those to be tried. If this universe is small, then

the “inventiveness” of the machine is severely li-
mited, and the value of the methods that it deve-
lops depends more on the astuteness of the pro-
grammer in choosing a universe containing good
hypotheses than an ability of the learning system
to pick the best hypothesis from among those in
the universe. In order to give the learning system
a “free hand”, it should have a universe which,
although well-defined, is so large and varied that
the user of the system is not even acquainted
with the forms of all the methods it contains.

Artificial learning systems need huge processing
capabilities. New physical concepts of informa-
tion processing have to be developed to meet
these requirements. A promising research direc-
tion is molecular electronics. But I would like to
mention a second reason, why molecular electro-
nics might be interesting for the design of artifi-
cial learning systems. Learning systems, natural
or artificial, face the problem of finding good hy-
potheses which explain the past data and which
can be used for predictions. But a fundamental
theorem states that hypotheses cannot be assi-
gned a probability in the classical sense of being
true [Popper, 1972]. There is a similar problem in
quantum mechanics, the theoretical foundation
of molecular electronics. Here also researchers
are looking for an extension of classical proba-
bilty theory. It is a general feature of quantum
mechanics that one needs a rule to determine

which of the alternative “histories” can be assi-
gned probabilities [Gell-Mann & Hartle, 1992].

A rigorous treatment of the above problems



seems to be out of reach at this moment. There-
fore I will concentrate on some important aspects
of the general problem. The outline of the paper
is as follows. In section 2 data fitting will be de-
scribed from the mathematical point of view. In
section 3 I extend the basic model. The gene-
ral task of data modelling and its connection to
Occam’s razor is described in a Bayesian frame-
work. Section 4 introduces the concept of com-
plexity as defined in computer science and in pro-
bability theory. The problem of discrete vs. con-
tinuous representations is discussed in section 5.
Some principal limitations of artificial automata
are discussed in section 6. In the final section,
two learning systems are discussed which have
been implemented by my research group. One sy-
stem models collective learning of populations in
a similar way to Darwinian evolution; the other
system models learning of an artificial organism
equipped by something like a brain. The paper
ends with a short discussion of the question: Can
quantum mechanics make contributions towards
finding a new computing paradigm needed for
systems operating in the real world?

2 Approximation of functions

Many learning procedures can be formulated as
approximation problems. Let X be the input
space and Y the output space of an unknown
process s := X — Y. The problem is to find
an approximation f: X — Y in a search space
(the universe) F such that

flz) = s(x) ve X. (1)
The approximation problem can be precisely de-
fined if a norm is given in the search space . In
this case one looks for an e-approzimation such

that

If = sl <e

(2)

In order to solve the problem, some information
about s has to be used. I will investigate the case
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where the unknown solution can be computed
using a finite data set D, where

D =A{(wjy; = s(x)),5=1...n}.

Many learning procedures determine an appro-
ximation f by fitting the data according to some
criterion. The most popular criterion is called
Least Mean Square Error (LMSE), which mini-
mizes the sum of the squared errors between the
data and the model predictions

1 i3
Err, =~ Sy = flap)||? — MIN.  (3)
i=1

This minimization problem is investigated in dif-
ferent scientific disciplines. If the search space is
a space of functions, then the problem belongs to
mathematical approzimation theory. If the search
space consists of non-numeric elements such as
rules or program components, then the problem
belongs to artificial intelligence. It is called pro-
gram synthesis by examples.

In mathematical approximation theory, many re-
sults have been obtained. A distinction is made
between the interpolation problem and the appro-
zimation problem. In interpolation, the function
f has to fit the data points exactly. In approxi-
mation one looks for a function f which appro-
ximates the unknown function s best according
to some norm in the function space. By defini-
tion, the error of the best approximation func-
tion not more than that of the best interpolation
function. But the best interpolation function can
be constructed for many subspaces of functions,
whereas no method has been discovered for con-
structing the best approximation function.

Most of the results from mathematical ap-
proximation have been obtained for the omne-
dimensional case only. I will summarize some
well known results for the maximum norm and
search spaces F' consisting of polynomials. Here
the best interpolation polymomial was computed
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by Chebychev. The optimal interpolation points
{x;} are given by the zeros of the Chebychev po-
lynomials. It could be shown that the error of the
best interpolation polynomial is only a factor of
O(log(n)) larger than the error of the best ap-
proximation polynomial where n is the order of
the polynomial. For the Euclidian norm, the op-
timal interpolation polynomial is defined at the
zeros of the Legendre polynomials.

An extension of the classical mathematical ap-
proximation problem was developed by Traub
[1980]. The generality and power of the exten-
sion is a result of the fact that information and
problem complexity play a central role in this ap-
proach. In classical approximation theory, opti-
mal algorithms are computed by making various
technical assumptions about the class of algo-
rithms and the class of problem elements. These
assumptions are often not verifiable. Further-
more, depending on the assumptions, many dif-
ferent optimal approximations might exist. The
concept of problem complexity deals with the
meta-problem: how to find the best of the op-
timal approximations.

Problem complexity is a measure of the intrinsic
difficulty of obtaining the solution to a problem
regardless of how this solution is obtained. It can
be defined with respect to a model of compu-
tation and a class of “permissible” information
operators. Unfortunately, the determination of
problem complexity is very difficult; it has been
completely solved for only very few problems. I
will not discuss this approach further. The inte-
rested reader is referred to Traub [1980].

The theory of optimal algorithms closes the gap
between the mathematical and the statistical ap-
proach to the data-driven learning problem. In
the statistical approach, the data is not relia-
ble but corrupted by noise. Therefore the appro-
ximation problem consists of two subproblems:
first to estimate the amount of noise and then
to approximate the corrected data. I will discuss
this problem with a simple example. Consider
the problem of a non-parametric estimation of
a regression function s from observations of the
form y; = s(z;)+ &, i =1,..n, where 2; = i/n,

and &; are random variables such that

E(fz) = 0, E(fzf]) = 0252']‘ 02 > 0. (4)
It is assumed that s is defined on [0,1] and
can be represented as a Fourier series: s(z) =
> 521 ¢;d;(x). Let the approximation be defined

for N < n as
N

In(z) = Z:c}rbj(x); ¢ = % Zi: Ym @i (@m).
(5)

What is the optimal order N of the approxima-
tion? The answer depends on the optimality cri-
terion to be used. The usual C),-criterion leads
to

(6)

Nopt = argn <, min(Erry + 202Nn_1),

where
1 n
Erry = — > (fnlz) — i)

=1

For 0 < 1 we have the mathematical approxi-
mation problem with the solution N = n. With
a very large amount of noise, i.e. ¢ > 1 the opti-
mal N can be much smaller. If we interpret N as
an indicator for the complexity of the approxi-
mation model, we see that the C-criterion tries
to balance model complexity with interpolation
error.

In the next section I will treat the above problem
in a general Bayesian framework. This model is
able to handle noisy data as well as active data
selection.

3 Data selection, model selec-
tion, and Occam’s razor

In science, a central task is to develop and com-
pare models to account for data. Two levels of



inference are involved in the task of data-driven
modelling. At the first level of inference, one as-
sumes that one of the models that was invented is
true: that model is then fitted to the data. Ty-
pically a model includes some free parameters;
fitting the model to the data involves inferring
what values those parameters should probably
take, given the data. This is the approach of ma-
thematical approximation theory. The results of
this inference are often summarised by the most
probable parameter values and hopefully some
error bars on those parameters. The second le-
vel of inference is the task of model comparison.
Here, one wishes to compare the models in the
light of the data, and assign some sort of prefe-
rence or ranking to the alternatives.

Model comparison is a difficult task because it is
not possible simply to choose the model that fits
the data best: more complex models can always
fit the data better, so the maximum likelihood
model choice would lead us inevitably to implau-
sible over-parameterised models which generalise
poorly. Occam’s razor states that unnecessarily
complex models should not be prefered to simp-
ler ones.

In this section I will survey the Bayesian ap-
proach to Occam’s razor. This survey is based
on MacKay [1992].

Let us write down Bayes’ rule for the two levels of
inference described above. Each model H; is as-
sumed to have a vector of parameters w. A model
is defined by its functional form and two proba-
bility distributions: a prior distribution P(w|H;)
which states what values the model’s parame-
ters might plausibly take; and the predictions
P(D|w, H;) that the model makes about the data
D when its parameters have particular values w.
Note that models with the same parameterisa-
tion but different priors over the parameters are
defined to be different models.

In model fitting it is assumed that one mo-
del H; is true, and the model’s parameters w
are then inferred from given data. Using Bayes’s
rule, the posteriori probability of the parame-
ter w is
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P(D|w, H;)P(w|H;)

Pw|D,H,) = 7
In words:
) Likelihood x Prior
Posterior = - .
Fuvidence

For model fitting, the normalising constant P(D|H;)

is commonly ignored. It will be important in the
second level of inference, and it is named ewvi-
dence for H;. For model comparison one wis-
hes to infer which model is most plausible given
the data. The posterior probability of each model
is:

P(H;|D) x P(D|H;)P(H;). (8)

The second term, P(H;), is a subjective prior over
our hypothesis space which expresses how plausi-
ble we thought the alternative models were before
the data arrived. This subjective part of the in-
ference will typically be overwhelmed by the ob-
jective term, the evidence. Assuming that there
is no reason to assign strongly differing priors
P(H;) to the alternative models, models H; are
ranked by evaluating the evidence.

3.1 Model fitting

Let us now explicitly study the evidence in order
to gain insight into how the Bayesian Occam’s
razor works. The evidence is defined as

P(D|H;) = /P(D|w,Hi)P(w|HZ»)dw. (9)

For many problems, including interpolation, it is
common that the integrand has a strong peak
at the most probable parameters w*. Then the
evidence can be approximated by the height of
the peak of the integrand times its width, Aw =
w — w*

P(D|H;) = P(D|w*, H:)P(w*| H;)Aw. (10)
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If w is k-dimensional, and if the posterior is well
approximated by a gaussian, the above equation
can be computed. The facor Aw is given by the
determinant of the gaussian covariance matrix
(MacKay [1992]):

P(D|H;) ~ P(D|w*,Hi)P(w*|H¢)(27r)k/2(det0)_1/2,P(D|w7ﬁ7avN): P({y} o}, w, 5, A, N),

(11)

where
C = —=VVlogP(w|D, H;).

Let us apply this framework to the noisy inter-
polation problem. For simplicity, let us assume
that x and y are scalars. To define a linear inter-
polation model, a set of £ fixed basis functions
A ={¢;(x)}is chosen. The interpolated function
is assumed to have the form

k
y(a) = Zwﬂbj(w)-

The data set is modeled as deviating from this
mapping under some additive noise process:

yi = y(wi) + &

If the £ have a zero-mean gaussian distribution
whose standard deviation is o,, then the proba-
bility of the data given the parameters is:

exp(—ﬁ/QETTD(D|w, A))
Zp(B)
(12)

where § = 1/o2, Errp = Y (y(a;) — y;)?, and
Zp(B) = (2r/B)N/2. Under these assumptions,
finding the maximum likelihood parameters w*
is identical to minimizing the quadratic error
Errp. This is just the least mean square er-
ror (LMSFE) criterion mentioned in section 2.
It is well known that this may be an “ill-posed”
problem. That is, the w that minimises Errp

P(D|w,3,A,N) =

is underdetermined and/or depends sensitively
on the details of the noise in the data. Thus it
is clear that to complete our interpolation mo-
del we need a prior R that expresses the sort
of smoothness we expect the interpolant y(z)
to have. I will not discuss this extension here.
Strictly one should write

since interpolation models do not predict the dis-
tribution of inputs {;}. But with the Bayesian
framework this problem, often called active lear-
ning or sequential design, can also be addressed.
There are two scenarios in which one would like
to actively select training data. In the first, data
measurements are expensive or slow, and the re-
searcher wants to know where to look next so as
to learn as much as possible. In the second sce-
nario, there is an immense amount of data, and
one has to select a subset of points that are the
most useful.

For active data selection, objective functions
have to be defined which measure the expected
informativeness of candidate measurements. At
least three different criteria are possible: maximi-
zing the total information gain, maximizing the
information gain in a region of interest, and ma-
ximizing the discrimination between two models.
All these criteria depend on the assumption that
the hypothesis space is correct. This is their main
weakness. Paafl and Kindermann [1995] used the
variance of the predictions of a population of mo-
dels. Data is selected in areas where the variance
is highest.

3.2 Model comparison

I now proceed with the second level of inference,
model comparison. To rank alternative basis sets
A, noise models N and regularisers R in the light
of the data D, the posterior probabilities for al-
ternative models H = {A, N, R} are examined:

P(H|D) x P(D|H)P(H). (13)



Assuming that there is no reason to assign stron-
gly differing priors P(H), alternative methods
H are ranked just by examining the evidence

P(D|H).

A slightly different approach to the model selec-
tion problem uses the minimal description length
of Rissanen [1992]. It is restricted to binary pro-
blems. Let C be an injective coding function from
a discrete set X into the set of all binary strings
B*. Let L(z) be the length of C'(2), i.e., the num-
ber of binary digits in C(x). A code C'is said to
be a prefix code, if

ST ok <,

rzeX

(14)

Thus, a prefix code defines a distribution on X.
Shannon’s fundamental coding theorem states
that for a given distribution P(x), all prefix co-
des must have a mean length bounded below by
the entropy

S Pla)i(a) 2 — Y PlalogsPla)  (15)

The lower bound can be reached only if the
lengths satisfy the equality L(z) = —logP(z)
for every . In this sense one could call —logy P()
the Shannon complexity of z relative to the “mo-

del” P.

The above analysis can be extended to a whole
class M = {P(y|z,0)} where 8 ranges over some
subset of the k-dimensional Euclidean space. In
this case the minimum description length crite-
rion can be computed, which combines model
complexity, the number of parameters and the
precision of the data n.

~ k
MDL(ylz, k) = —loga[ P(y|z,0)] + §loggn (16)

MDL has to be minimized over k to get the op-
timal model complexity.
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3.3 Some remarks

Bayesian model selection is a simple extension
of maximum-likelihood model selection: the evi-
dence is obtained by multiplying the best fit li-
kelihood by a model complexity factor. The evi-
dence is a measure of a model’s plausibility. The
amount of CPU time required to run a model is
not addressed. Choosing between models on the
basis of how many operations they need can be
seen as an exercise in decision theory. This needs
further study.

The Bayesian framework does not lead to new
learning procedures, but it is very useful in cla-
rifying the many implicit assumptions hidden in
the specific learning procedures.

The framework presented in this section is
currently one of the most advanced methods for
data-driven learning. Its application depends on
many assumptions. The crucial question is whe-
ther these assumptions are fulfilled for an un-
known data set.

I will now discuss other measures of the comple-
xity of a problem.

4 Information, complexity and
uncertainty

In computer science the complexity of a problem
is measured by the length of the shortest pro-
gram written in some standard language (e.g.,
a program for a Turing machine) by which the
problem can be solved. This information is called
the algorithmic complexity of the problem. Often
this measure cannot be computed. It is therefore
of limited practical use. Furthermore, it does not
take into account how many operations have to
be executed by the program to solve the problem.
Such a measure is the computational complezity.

Computational complexity is a characterization
of the time or space requirements for solving a
problem by a particular algorithm. Both of these
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requirements are usually expressed in terms of a
single parameter that represents the size of the
problem.

Definition: The time complexity function f(n)
of an algorithm s the largest amount of time re-
quired to solve a problem of size n.

It has been very useful to distinguish between
two classes of algorithms by the rate of growth of
their time complexity function. One class is cal-
led P. It consists of polynomial time algorithms.
Here the time complexity can be expressed in
terms of a polynomial. The second class of algo-
rithms consists of exponential time algorithms.
This class is called “non polynomial”, N P. More
precisely the VP classes of problems are defined
as follows. If an individual problem has a solu-
tion, then the algorithm will find that solution
in exponential time. But it must be possible to
check in polynomial time that the proposed so-
lution is indeed a solution.

N P problems arise in many contexts. A very po-
pular problem is the “travelling salesman pro-
blem”. Here one seeks a tour which visits each
city exactly once for which the distance is a mini-
mum. The number of possible tours grows expo-
nential in the number of cities. In fact, this pro-
blem is not only N P, but what is named as NP-
complete. This means that any other NP pro-
blem can be converted into it in polynomial time.
It is commonly believed by computer scientists
that it is impossible, with a Turing machine-like
device, to solve an NP — complete problem in
polynomial time.

Conjecture: P # NP

This conjecture remains the most important un-
solved problem in complexity theory. NP pro-
blems are the hard ones. For large problem sizes,
they are transcomputational. This term was coi-
ned by Bremermann [1962]. An algorithm which
needs more than 10°3 operations is transcom-
putational. It cannot run until completion on
any real computational system. The exact num-
ber is not so important, but it shows that there
are definite limits to the computational power of

any system in our universe. This bound has im-
plications for N P problems. The travelling sa-
lesman problem for instance has approximately
10°0 tours for 66 cities. In real life one is inte-
rested in good solutions for problems with more
than 1000 cities.

Bremermann [1962] derived his bound by simple
considerations based on quantum theory. It is
surely an upper bound.

Bremermann’s bound:No data processing sy-
stem, whether artificial or living, can process
more than 2 % 10*7 bits per second per gram of
its mass.

Bremermann derives the limit from the follo-
wing considerations based on quantum physics.
The phrase “processing x bits” means the trans-
mission of that many bits over one or several
communication channels within the computing
system. Now assume that information is enco-
ded in terms of energy levels within the in-
terval [0, £]. Assume further that energy levels
can be measured with an accuracy of only AF.
The most refined encoding is defined in terms
of markers by which the whole interval is divi-
ded into N = F/AF equal subintervals, each
associated with the amount of energy AF. In or-
der to represent more information with the same
amount of energy, it is desirable to reduce AF.
The extreme case is represented by the Heisen-
berg principle of uncertainty: energy can be mea-
sured to the accuracy of AF if the inequality

AEAL> h (17)

is satisfied. This means that

At
N < —.
- h

Now by Einstein’s formula

F = mdc.
If we take the upper (most optimistic) bound of
N we get
mclAt
o
Substituting numerical values for ¢ and h, one
obtains N = 1.36 - 10*"mAt.

N =




Using this bound, Bremermann calculated the
total number of bits processed by a hypotheti-
cal computer the size of the earth within a time
period equal to the estimated age of the earth.
He computed 10°° bits. This number is refer-
red to as Bremermann’s limit. Problems that re-
quire processing more than 10%% bits of informa-
tion are called transcomputational problems. It
is obvious that exponential time algorithms are
already transcomputational for fairly small pro-
blem sizes.

Recent research in fuzzy sets and probability
theory has taken a different approach in trying
to define complexity. It is not absolutely defined,
but relative to the knowledge of a given observer.
A good survey about the different definitions is
given by Klir and Folger [1988].

Two general methods of defining system com-
plexity can be distinguished: one is based on in-
formation, the other on uncertainty. In the first
one the complexity is proportional to the amount
of information required to describe the system.
In the second one, system complexity is propor-
tional to the amount of information needed to
resolve any uncertainty associated with the sy-
stem.

To the neurophysiologist, for instance, the brain
consists of a network of fibers and a soup of en-
zymes. Therefore the transmission of a detailed
description of it requires much time and space.
To a butcher, in contrast, the brain is simple, for
he has to distinguish it from only about thirty
other types of “meat”.

Both definitions of complexity are relative to an
observer and its knowledge. They are related to
each other under the closed world assumption.
With this assumption the universe of discourse
can be divided into two sets: the set of events
known as possible and the set of events known
as impossible. The set of unknown events is as-
sumed to be empty.

The above definitions have been primarily used
for the purpose of developing computational me-
thods by which systems that seem incomprehen-
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sible can be simplified to an acceptable level of
complexity. There is a major problem with this
approach. Even if one has found an algorithm
that reduces the complexity of the given system,
the computational complexity associated with
the simplification algorithm has to be taken into
account. If the resulting algorithm is transcom-
putational, it is of no practical use.

Another severe problem is the closed-world as-
sumption. The real world is open for any sy-
stem operating in it. For any system the set of
unknown events is infinite. Unfortunately, the
scientific understanding of open worlds is in its
infancy. I believe that the development of a cal-
culus for dealing with open systems is one of
the most important problems in epistemology,
probability theory, and also quantum physics.
I will just mention the work of Jaynes [1992].
He raises the question of whether probability
theory is a “physical” theory of phenomena go-
verned by “chance” or “randomness” or whe-
ther it should be considered as an extension of
logic, showing how to reason in situations of
incomplete information. Jaynes [1992] remarks:
“We then see the possibility of a future quan-
tum theory in which the role of incomplete in-
formation is recognized: for any variable F, the
dispersion (AF)? =< F? > — < F >? repres-
ents only the accuracy with which the theory is
able to predict the value of F'--- When AF is
infinite, it means only that the theory is comple-
tely unable to predict F. The only thing that is
infinite is the uncertainty of prediction.”

In summary: The concepts of information, com-
plexity, and uncertainty are used differently in
different disciplines. In the future a common fra-
mework of these concepts is needed. Quantum
mechanics can play a major role in this develop-
ment. I will now turn to another important topic
for any system, that of the representation.
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5 Discrete vs. continuous re-

presentations

The theory of computing has been centered on
the binary, all-or-none type. It has been, from
the mathematical point of view, combinatorial
rather than analytical. Rigid, all-or-none con-
cepts have little connections to the continuous
concept of real or complex numbers, on which
mathematical analysis is based. John von Neu-
mann [1948], one of the founders of today’s com-
puters, warned: “Formal logic is, by the nature
of its approach, cut off from the best cultiva-
ted portions of mathematics, and forced onto the
most difficult part of the terrain, into combina-
torics.” Therefore von Neumann predicted that
a powerful theory of automata will differ from
the present system of formal logic in two rele-
vant aspects.

1. The actual length of “chains of reasoning”,
that is, of the chains of operations, will have
to be considered.

2. The operations of logic will all have to be
treated by procedures which allow excepti-
ons. All of this will lead to theories which
are less rigid than past and present formal
logic.

Von Neumann continued: ”"There are numerous
indications to make us believe that this new sy-
stem of formal logic will move closer to another
discipline which has been little linked in the past
with logic. This is thermodynamics, primarily in
the form it was received from Boltzmann.”

In my opinion, von Neumann’s predictions tur-
ned out to be right. The importance of the length
of the chain of operations was first recognized in
computer science. It lead to the theory of com-
putational complexity discussed in the previous
section. Boltzmann’s thermodynamics approach,
especially the concept of entropy, is becoming in-
creasingly popular in the design of new learning
systems. I like to call this new emerging field
“quantitative artificial intelligence”.

New learning systems now under development
for robotics do not use just one learning proce-
dure: they frequently employ different learning
procedures at different levels of the system ar-
chitecture. The learning systems try to process
both discrete and continuous information. Some
promising new architectures consist of three le-
vels. An overview and a sematic description of
the three levels is shown in the following table.

Semantics | Characteristics
plans discrete processes
relations discrete values
objects

discrete processes
features continuous values

continuous processes
signals continuous values

At the most abstract level, there are discrete va-
lues and discrete processes. The idealization of
this representation is that its members can be
characterized abstractly as a set of discrete ele-
ments. At the lowest level, the information is
in the form of continuous values and continuous
processes. The constraints at this level are captu-
red by Shannon’s information and his sampling
theorem. The idealization of this representation
is that of a continuous function of a set of varia-
bles, e.g., y = f(z,t). In between these extremes
there is an intermediate level that can be charac-
terized as requiring continuous values of discrete
processes. For example, the rotation of the visual
field can be characterized by rotational values of
a single rigid body motion process. There is only
one process, but the actual parameter values that
describe that process are continuous.

After describing some advanced methods how to
synthesize reasonable hypotheses from data, I
will discuss the question: What are the princi-
pal limits of such an approach? I will show that
there are limitations, which follow from the ge-
neral induction problem, discussed intensively by
Popper [1972].
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6 Principal limitations of arti-
ficial automata

In 1943 McCulloch and Pitts proved this remar-
kable theorem: Anything which can be defined at
all logically, strictly and unambiguously in a fi-
nite number of words can also be realized by an
artificial neural network. At first this theorem
seems to indicate that an artificial system is able
to solve any clearly defined problem. But the
content of the theorem has to be interpreted dif-
ferently. This was shown by von Neumann [1948]
who raised the two questions:

e Can the network be realized within prac-
tical limits, e.g., is the required number of
connections less than the number of atoms
in the universe?

e Can every existing mode of behavior be put
completely and unambiguously into words?

Let us discuss both questions with a specific ex-
ample, the classification of geometrical entities as
performed by humans. There have been three ap-
proaches to this central problem of vision. I call
them the theoretical, the learning-from-example
and the copy-the-brain approach.

In the theoretical approach researchers try to
find a computational calculus that solves the
classification problem. Up to now, a calculus has
only been developed for very restricted ideali-
zed geometric objects. The limitations of the
learning-by-examples approach was already dis-
cussed by von Neumann [1948]. He argued as fol-
lows: There seems to be no difficulty in descri-
bing how an automata might be able to identify
any two rectilinear triangles. The classification
of more general kinds of triangles — triangles
whose sides are curved, triangles that are indi-
cated by shading, etc. can also easily be done.
Next we want the system to recognize hand-
written objects and letters. Von Neumann re-
marks: “At this point we should have the vague
and uncomfortable feeling that a complete ca-
talogue along such lines would not only be ex-
ceedingly long, but also unavoidably indefinite.”
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These problems, however, constitute only a small
fragment of the more general concept of identifi-
cation of analogous geometrical entities. This, in
turn, is only a microscopic piece of the general
concept of analogy. “Nobody would attempt to
describe and define within any practical amount
of space and time the general concept of analogy
which dominates human vision”. Learning from
examples just by enumeration is not effective for
large problem domains. The number of examples
goes to infinity.

Therefore, a bottom-up approach was tried —
replicating the brain, which obviously solves the
classification problem — instead of solving the
problem. The only way to define what consti-
tutes a visual analogy may be a description of
the connections of the visual cortex of the hu-
man brain. Any attempt to describe it by literal
and formal-logical methods may lead to some-
thing less manageable. But this means that the
connections of the brain might be the simplest
description of the functions it can perform. Von
Neumann remarks: “In fact, results in modern
logic indicate that phenomena like this have to
be expected when we deal with really complica-
ted entities.”

But the brain consists of about 102 neurons and
106 connections. How long will it take to pro-
duce a description it? Furthermore, the structure
of the brain only partly defines visual analogy.
The data flow, i.e., the processing of the data,
must also be described. Such a description might
be finite, but it is obviously transcomputational.
It cannot be expressed by using all the atoms
in the universe. “Obviously, there is on this pro-
blem no more profit in the McCulloch-Pitts re-
sult.” Von Neumann concludes his discussion of
the theorem with the remarks: “It may be, howe-
ver, that in the process of understanding the cen-
tral nervous system, logic will have to undergo
a pseudomorphosis to neurology to a much grea-
ter extent than the reverse. One of the relevant
things we can do at this moment with respect
to the theory of the central nervous system is to
point out the directions in which the real pro-
blem does not lie.”
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7 Learning from nature

In the previous section I showed some general
limitations of artificial automata. Nevertheless,
each system, whether natural or artificial, can
and should smprove its capabilities. Learning is
a dominant feature of living beings. Therefore,
my research group at the GMD concentrates on
learning methods used in nature. Currently we
model two different natural learning methods.
One method models collective learning of popu-
lations similar to Darwinian evolution, the other
method models individual learning done by orga-
nisms equipped with a brain. Learning and ad-
aptation is one of the most important features
of nature. Therefore it seems that learning from
nature is a good strategy. This was already ad-
vocated by John von Neumann [1948]. He wrote:
“Some of the regularities which we observe in
the organization of natural organisms may be
instructive in our thinking and planning of ar-
tificial automata. Conversely, a good deal of our
experiences with our artificial automata can be
to some extent projected on our interpretations
of natural organisms.”

In learning by simulating evolution, we distin-
guish between two models. One model is based
on natural evolution without any central con-
trol Miihlenbein [1991], the other model is based
on artificial selection as carried out by human
breeders. The second model, the breeder genetic
algorithm has been used successfully for large-
scale optimization problems. The theory of this
algorithm is based on the equation for the re-
sponse to selection, which is also used by bree-
ders. An overview can be found in Miihlenbein
and Schlierkamp-Voosen [1993, 1994].

The second learning method models learning in
individuals. The emphasis is on real-world ap-
plications. The learning method is surprisingly
similar to learning by evolution. It can be cal-
led the Darwinian model of individual learning.
The model is based on the philosophy of Pop-
per [1972]. From the data seen so far, the lear-
ning system generates hypotheses explaining the
data. The hypotheses are used to predict the out-

come for new data. All hypotheses are prelimi-
nary, they are evaluated according to how well
they explain the data. A fundamental problem
is the fact that hypotheses cannot be assigned a
probability of being true. This was most clearly
stated by Popper [1972]. Hypotheses cannot be
ranked according to a probability, two hypothe-
ses can only be compared according to their li-
kelihood of explaining the data. This is a general
formulation of the classical induction problem.

The induction problem can easily be shown. Let
the unknown function generating the data be a
Boolean function of input size n. If 2" — 1 inputs
are given, two hypotheses are left which explain
all the data. Each hypothesis will correctly pre-
dict the output with a probability of only 0.5 for
the very last input. If a smaller input set is gi-
ven, the probability of correct prediction goes to
zero rapidly.

Quantum mechanics is faced with a surprisingly
similar problem. Not every “history” in quan-
tum mechanics can be assigned a probability of
being true. In order to derive an understanda-
ble calculus, Gell-Mann [1992] proposes a deco-
herence functional. It is a complex functional on
any pair of histories in the set of alternative hi-
stories. Decoherence is also critical to molecular
electronics. Two quantum systems that have in-
teracted in the past (which is necessary to pro-
cess information) and evolve coherently in time
cannot be separated again. In order to assure
the independent preparation and measurement
of the subsystems, it is necessary to include dis-
sipation which destroys the coherence between
the two subsystems. To make my point clear: I
am not saying, that researchers in quantum me-
chanics are working on the induction problem
for learning systems in general. But within their
smaller domain of research, they seem to have
similar methodological problems as a designer of
a learning system.

Our current approach to learning in an open-
world problem is based on the idea of reflec-
tion. The learning system continuously observes
and assesses its own behavior. It tries at every
step to be aware of what it knows and what it
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does not know. A system meeting this claim is
able to learn incrementally, and, furthermore, to
actively explore its environment. Qur first im-
plementation is a hand-eye robot which consists
of two arms and sensors. Design principles and
some applications can be found in Beyer and
Smieja [1995] and Smieja [1995].

8 A quantum neural computer

So far, all computers have been designed ba-
sed on rigid all-or-none concepts. I have shown
the limitations of this approach. Currently, more
flexible concepts are emulated by software on
the otherwise rigid hardware. Intelligence has
been taken by many scientists to emerge from
the complexity of the interconnections between
the neurons of the brain. I have argued in this
paper that it seems to be impossible to model
this interconnection scheme on a computer. It is
transcomputational. It seems therefore fruitless
to build an intelligent system by a “copy-the-
brain” approch.

The most promising way is the “learning-from-
examples” approach. Unfortunately this approach
suffers from the induction problem, which has
been discussed most vividly by Popper [1972]. I
hope, that this paper has shown, that molecular
electronics and computer scientists should work
together for two reasons. The first one, the con-
ventional one, is just to increase the speed of the
computation and leave the computational model
as it is. The second one, the theoretical one, is
to investigate new models of computation, based
on quantum mechanics. A promising approach is
the “many histories” view of Gell-Mann.
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