Analysis of Selection, Mutation and
Recombination in Genetic Algorithms

Heinz Muhlenbein and Dirk Schlierkamp-Voosen

GMD Schlofl Birlinghoven
D-53754 Sankt Augustin, Germany

Abstract. Genetic algorithms have been applied fairly successful to a
number of optimization problems. Nevertheless, a common theory why
and when they work is still missing. In this paper a theory is outlined
which is based on the science of plant and animal breeding. A central
part of the theory is the response to selection equation and the concept of
heritability. A fundamental theorem states that the heritability is equal
to the regression coefficient of parent to offspring. The theory is applied
to analyze selection, mutation and recombination. The results are used
in the Breeder Genetic Algorithm whose performance is shown to be
superior to other genetic algorithms.

1 Introduction

Evolutionary algorithms which model natural evolution processes were already
proposed for optimization in the 60’s. We cite just one representative example,
the outstanding work of Bremermann. He wrote in [6]. “The major purpose
of the work is the study of the effects of mutation, mating, and selection on
the evolution of genotypes in the case of non-linear fitness functions. In view
of the mathematical difficulties involved, computer experimentation has been
utilized in combination with theoretical analysis... In a new series of experiments
we found evolutionary schemes that converge much better, but with no known
biological counterpart.”

These remarks are still valid. The designer of evolutionary algorithms should
be inspired by nature, but he should not intend a one-to-one copy. His major
goal should be to develop powerful optimization methods. An optimization is
powerful if it is able to solve difficult optimization problems. Furthermore the
algorithm should be based on a solid theory. We object popular arguments along
the lines: “This 1s a good optimization method because it is used in nature”, and
vice versa: “This cannot be a good optimization procedure because you do not
find it in nature”.

Modelling the evolution process and applying it to optimization problems
is a challenging task. We see at least two families of algorithms, one modelling

#711 Tn: Wolfgang Banzhaf and Frank H. Eeckman, Eds., Evolution as a Computational
Process, Lecture Notes in Computer Science, pages 188-214, Springer, Berlin, 1995

natural and self-organized evolution, the other is based on rational selection as
done by human breeders. In principle artificial selection of animals for breeding
and artificicial selection of virtual animals on a computer is the same prob-
lem. Therefore the designer of an evolutionary algorithm can profit from the
knowledge accumulated by human breeders. But in the course of applying the
algorithm to difficult fitness landscapes, the human breeder may also profit from
the experience gained by applying the algorithm.

Bremermann notes [6]: “One of the results was unexpected. The evolution
process may stagnate far from the optimum, even in the case of a smooth convex
fitness function...It can be traced to the bias that is introduced into the sampling
of directions by essentially mutating one gene at a time. One may think that
mating would offset this bias; however, in many experiments mating did little to
improve convergence of the process.”

Bremermann used the term mating for recombining two (or more) parent
strings into an offspring. The stagnation problem will be solved in this paper.
Bremermann’s algorithm contained most of the ingredients of a good evolution-
ary algorithm. But because of limited computer experiments and a misssing
theory, he did not find a good combination of the ingredients.

In the 70’s two different evolutionary algorithms independently emerged -
the genetic algorithm of Holland [18] and the evolution strategies of Rechen-
berg [24] and Schwefel [27]. Holland was not so much interested in optimization,
but in adaptation. He investigated the genetic algorithm with decision theory
for discrete domains. Holland emphasized the importance of recombination in
large populations, whereas Rechenberg and Schwefel mainly investigated nor-
mally distributed mutations in very small populations for continuous parameter
optimization.

Evolutionary algorithms are random search methods which can be applied to
both discrete and continuous functions. In this paper the theory of evolutionary
algorithms will be based on the answers to the following questions:

— Given a population, how should the selection be done?

— Given a mutation scheme, what is the expected progress of successful muta-
tions?

— Given a selection and recombination schedule, what is the expected progress
of the population?

— How can selection, mutation and recombination be combined in synergistic
manner?

This approach is opposite to the standard GA analysis initiated by Holland,
which starts with the schema theorem [18]. The theorem predicts the effect of
proportionate selection. Later mutation and recombination are introduced as
disruptions of the population. Our view is the opposite. We regard mutation
and recombination as constructive search operators. They have to be evaluated
according to the probability that they create better solutions.

The search strategies of mutation and recombination are different. Mutation
is based on chance. It works most efficiently in small populations. The progress

for a single mutation step is almost unpredictable. Recombination is a more
global search based on restricted chance. The bias is implicitly given by the pop-
ulation. Recombination only shuffles the substrings contained in the population.
The substrings of the optimum have to be present in the population. Otherwise
a search by recombination is not able to locate the optimum.

Central themes of plant and animal breeding as well as of genetic algorithms
can be phrased in statistical terms and can make substantial use of statistical
techniques. In fact, problems of breeding have been the driving forces behind the
development of statistics early in this century. The English school of biometry
introduced a variety of now standard statistical techniques, including those of
correlation and regression. We will use these techniques in order to answer the
above questions. A central role plays the response to selection equation developed
in quantitative genetics.

The outline of the paper is as follows. In section 2 some popular evolutionary
algorithms are surveyed. Truncation selection and proportionate selection are
investigated in section 3. In section 4 a fundamental theorem is proven which
connects the response to selection equation with parent-offspring regression. Re-
combination/crossover and mutation are theoretically analyzed in sections 5 and
6. In section 7 mutation vs. crossover is investigated by means of a competition
between these two strategies. Then numerical results are given for a test suite
of discrete functions.

2 Evolutionary Algorithms

A previous survey of search strategies based on evolution has been done in [20].
Evolutionary algorithms for continuous parameter optimization are surveyed in
[4].

Algorithms which are driven mainly by mutation and selection have been
developed by Rechenberg [24] and Schwefel [27] for continuous parameter opti-
mization. Their algorithms are called evolution strategies.

(1t + A) Evolution Strategy

STEP1: Create an initial population of size A

STEP2: Compute the fitness F'(z;) ¢=1,...,A

STEP3: Select the g < X best individuals

STEP4: Create A/u offspring of each of the p individuals by small variation
STEPS5: If not finished, return to STEP2

An evolution strategy i1s a random search which uses selection and variation.
The small variation is done by randomly choosing a number of a normal dis-
tribution with zero mean. This number is added to the value of the continuous
variable. The algorithm adapts the amount of variation by changing the variance
of the normal distribution. The most popular algorithm uses = A =1

In biological terms, evolution strategies model natural evolution by asexual
reproduction with mutation and selection. Search algorithms which model sexual

reproduction are called genetic algorithms. Sexual reproduction is characterized
by recombining two parent strings into an offspring. The recombination is called
crossover. Genetic algorithms were invented by Holland [18]. Recent surveys can
be found in [14] and the proceedings of the international conferences on genetic

algorithms [25] [5] [13].
Genetic Algorithm

STEPO: Define a genetic representation of the problem

STEP1: Create an initial population P(0) = 2§, ..., 2%

STEP2: Compute the average fitness F' = va F(x;)/N. Assign each individual
the normalized fitness value F(x!)/F

STEP3: Assign each x; a probability p(x;,t) proportional to its normalized
fitness. Using this distribution, select N vectors from P(t). This gives
the set S(t)

STEP4: Pair all of the vectors in S(¢) at random forming N/2 pairs. Apply
crossover with probability peess to each pair and other genetic oper-
ators such as mutation, forming a new population P(t + 1)

STEPS5: Set t =t + 1, return to STEP2

In the simplest case the genetic representation is just a bitstring of length n,
the chromosome. The positions of the strings are called loci of the chromosome.
The variable at a locus is called gene, 1ts value allele. The set of chromosomes
is called the genotype which defines a phenotype (the individual) with a certain
fitness.

The genetic operator mutation changes with a given probability p,, each bit of
the selected string. The crossover operator works with two strings. If two strings
= (#1,...,2y) and y = (y1,...,yn) are given, then the uniform crossover
operator [28] combines the two strings as follows

2=(21,..,%n) Zi=® 00 Z; = Y

Normally x; or y; are chosen with equal probability.

In genetic algorithms many different crossover operators are used. Most pop-
ular are one-point and two-point crossover. One or two loci of the string are
randomly chosen. Between these loci the parent strings are exchanged. This ex-
change models crossover of chromosomes found in nature. The disruptive uniform
crossover 1s not used in nature. It can be seen as n-point crossover.

The crossover operator links two probabilistically chosen searches. The in-
formation contained in two strings is mixed to generate a new string. Instead of
crossing-over | prefer to use the general term recombination for any method of
combining two or more strings.

A genetic algorithm 1s a parallel random search with centralized control.
The centralized part is the selection schedule. The selection needs the average
fitness of the population. The result is a highly synchronized algorithm, which
is difficult to implement efficiently on parallel computers. In the parallel genetic
algorithm PGA [20],[21], a distributed selection scheme is used. This is achieved

as follows. Each individual does the selection by itself. It looks for a partner in
its neighborhood only. The set of neighborhoods defines a spatial population
structure.

The second major change can also easily be understood. Each individual
is active and not acted on. It may improve its fitness during its lifetime by
performing a local search.

The parallel genetic algorithm PGA can be described as follows: :

Parallel Genetic Algorithm

STEPO: Define a genetic representation of the problem

STEP1: Create an initial population and its population structure

STEP2: Each individual does local hill-climbing

STEP3: Each individual selects a partner for mating in its neighborhood

STEP4: An offspring 1s created with genetic operators working on the geno-
types of its parents

STEPS5: The offspring does local hill-climbing. It replaces the parent, if it is
better than some criterion (acceptance)

STEPG6: If not finished, return to STEP3.

It has to be noticed that each individual may use a different local hill-climbing
method. This feature will be important for problems, where the efficiency of a
particular hill-climbing method depends on the problem instance.

In the PGA the information exchange within the whole population is a diffu-
sion process because the neighborhoods of the individuals overlap. All decisions
are made by the individuals themselves. Therefore the PGA is a totally dis-
tributed algorithm without any central control. The PGA models the natural
evolution process which self-organizes itself.

The next algorithm, the breeder genetic algorithm BGA [22] is inspired by
the science of breeding animals. In this algorithm, each one of a set of virtual
breeders has the task to improve its own subpopulation. Occasionally the breeder
imports individuals from neighboring subpopulations. The DBGA models ratio-
nal controlled evolution. We will describe the breeder genetic algorithm only.

Breeder Genetic Algorithm

STEPO: Define a genetic representation of the problem

STEP1: Create an initial population P(0)

STEP2: Each individual may perform local hill-climbing

STEP3: The breeder selects T% of the population for mating. This gives set
S(t)

STEP4: Pair all the vectors in S(¢) at random forming N pairs. Apply the
genetic operators crossover and mutation, forming a new population
P(t+1).

STEPS5: Set ¢ = ¢t + 1, return to STEP2 if it is better than some criterion
(acceptance)

STEPG6: If not finished, return to STEP3.

The major difference between the genetic algorithm and the breeder genetic
algorithm is the method of selection. The breeders have developed many dif-
ferent selection strategies. We only want to mention {runcation selection which
breeders usually apply for large populations. In truncation selection the T% best
individuals of a population are selected as parents.

The different evolutionary algorithms described above put different emphasis
on the three most important evolutionary forces, namely selection, mutation and
recombination. We will in the next sections analyze these evolutionary forces by
methods developed in quantitative genetics. One of the most important aspect
of algorithms inspired by processes found in nature is the fact that they can be
investigated by the methods proven usefully in the natural sciences.

3 Natural vs. Artificial Selection

The theoretical analysis of evolution centered in the last 60 years on under-
standing evolution in a natural environment. It tried to model natural selection.
The term natural selection was informally introduced by Darwin in his famous
book “On the origins of species by means of natural selection”. He wrote: " The
preservation of favourable variations and the rejection of injurious variations, I
call Natural Selection.” Modelling natural selection mathematically is difficult.
Normally biologist introduce another term, the fitness of an individual which
is defined as the number of offspring of that individual. This fitness definition
cannot be used for prediction. It can only be measured after the individual is
not able to reproduce any more. Artificial selection as used by breeders is seldom
investigated in textbooks on evolution. It is described in more practical books
aimed for the breeders. We believe that this is a mistake. Artificial selection is
a controlled experiment, like an experiment in physics. It can be used to iso-
late and understand specific aspects of evolution. Individuals are selected by the
breeder according to some trait. In artificial selection predicting the outcome of
a breeding programme plays a major role.

Darwin recognized the importance of artificial selection. He devoted the whole
first chapter of his book to artificial selection by breeders. In fact, artificial
selection independently done by a number of breeders served as a model for
natural selection. Darwin wrote: ”I have called this principle by the term Natural
Selection in order to mark its relation to man’s power of selection.”

In this section we will first analyze artificial selection by methods found
in quantitative genetics [11], [8] and [7]. A mathematically oriented book on
quantitative genetics and natural selection is [9]. We will show at the end of
this section that natural selection can be investigated by the same methods. A
detailed investigation can be found in [23].

3.1 Artificial Selection

The change produced by selection that mainly interests the breeder is the re-
sponse to selection, which is symbolized by R. R is defined as the difference be-

tween the population mean fitness M (t+1) of generation t+1 and the population
mean of generation ¢. R(¢) estimates the expected progress of the population.

R(t)= M(t+1)— M(t) (1)

Breeders measure the selection with the selection differential, which is symbol-
ized by S. It is defined as the difference between the average fitness of the selected
parents and the average fitness of the population.

S(t) = My(t) = M(t) (2)

These two definitions are very important. They quantify the most important
variables. The breeder tries to predict R(¢) from S(¢). Breeders often use trun-
cation selection or mass selection. In truncation selection with threshold Trunc,
the Trunc % best individuals will be selected as parents. Trunc is normally
chosen in the range 50% to 10%.

The prediction of the response to selection starts with

R(t) = b, - S(1) (3)

b; 1s called the realized heritability. The breeder either measures b; in previous
generations or estimates b; by different methods [23]. Tt is normally assumed
that b; is constant for a certain number of generations. This leads to

R(t) = b - S(t) (4)

There is no genetics involved in this equation. It is simply an extrapolation from
direct observation. The prediction of just one generation is only half the story.
The breeder (and the GA user) would like to predict the cumulative response
R, for n generations of his breeding scheme.

R, = R(t) (5)

In order to compute R, a second equation is needed. In quantitative genetics,
several approximate equations for S(¢) are proposed [7], [11]. Unfortunately these
equations are only valid for diploid organisms. Diploid organisms have two sets
of chromosomes. Most genetic algorithms use one set of chromosomes, i.e. deal
with haploid organisms. Therefore, we can only apply the research methods of
quantitative genetics, not the results.

If the fitness values are normal distributed, the selection differential S(¢) in
truncation selection is approximately given by

S=1I 0, (6)

where o, is the standard deviation. I is called the selection intensity. The for-
mula is a feature of the normal distribution. A derivation can be found in [7]. In
table 1 the relation between the truncation threshold Trunc and the selection
intensity I is shown. A decrease from 50 % to 1 % leads to an increase of the

Trunc|80 %[50 %|40 %|20 %|10 %|1 %
I 0.34| 0.8| 0.97| 1.2| 1.76|2.66

Table 1. Selection intensity.

selection intensity from 0.8 to 2.66.

If we insert (6) into (4) we obtain the well-known response to selection equation

[11].

R(t)=b-1 0,(t) (7)

The science of artificial selection consists of estimating b and o, (¢). The estimates
depend on the fitness function. We will use as an introductory example the binary
ONEMAX function of size n. Here the fitness is given by the number of 1’s in
the binary string.

We will first estimate 4. A popular method for estimation is to make a re-
gression of the midparent fitness value to the offspring. The midparent fitness
value is defined as the average of the fitness of the two parents. We assume uni-
form crossover for recombination. For the simple ON EM AX function a simple
calculation shows that the probability of the offspring being better than the mid-
parent is equal to the probability of them being worse. Therefore the average
fitness of the offspring will be the same as the average of the midparents. But
this means that the average of the offspring is the same as the average of the
selected parents. This gives b =1 for ONEM AX.

Estimating o,(¢) is more difficult. We make the assumption that uniform
crossover is a random process which creates a binomial fitness distribution with
probability p(¢). p(t) is the probability that there is a 1 at a locus. Therefore the
standard deviation is given by

ap(t) = /n-p(t) - (1 = p(t)) (8)

Theorem 1. If the population is large enough that it converges to the optimum
and if the selection intensity I is greater than 0, then the reponse to selection is
giwen for the ONEMAX function by

R(t) = N p(1)(1 = p(1)) (9)

The number of generations needed until equiltbrium is approrimate

GEN, = (g — aresin(2po — 1)) : @ (10)

po = p(0) denotes the probability of the advantageous bit in the initial popu-
lation.

Proof. Noting that R(t) = n(p(t + 1) — p(t)) we obtain the difference equation

Pt +1) - plt) = % @ (= p(0) (11)

The difference equation can be approximated by a differential equation

o _ = Vi) (=) (12)

The initial condition is p(0) = pg. The solution of the differential equation is
given by

p(t) =05 (1 +sin (%t + arcsin(2py — 1))) (13)

The convergence of the total population is characterized by p(GEN,) = 1. GEN,
can be easily computed from the above equation. One obtains

GEN, = (g — arcsin(2pg — 1)) . # (14)

The number of generations needed until convergence is proportional to /r

and inversely proportional to the selection intensity. Note that the equations are
only valid if the size of the population is large enough so that the population
converges to the optimum. The most efficient breeder genetic algorithm runs with
the minimal popsize N*, so that the population still converges to the optimum.
N* depends on the size of the problem n, the selection intensity I and the
probability of the advantageous bit py. This problem will be discussed in section
5.
Remark: The above theorem assumes that the variance of the fitness is binomial
distributed. Simulations show that the phenotypic variance is slightly less than
given by the binomial distribution. The empirical data is better fitted if the
binomial variance is reduced by a a factor #/4.3. Using this variance one obtains
the equations

~ T 1
R(t) = 13- N V()1 —p(t)) (15)
GEN, = % (g — arcsin(2pg — 1)) . @ (16)
Equation 15 is a good prediction for the mean fitness of the population. This
i1s demonstrated in figure 1. The mean fitness versus the number of generations is
shown for three popsizes N = 1024, 256, 64. The selection intensity is I = 0.8, the
size of the problem n = 64. The initial population was generated with pg = 1/64.
The fit of equation 15 and the simulation run with N = 1024 is very good. For
N = 256 and N = 64 the population does not converge to the optimum. These
popsizes are less than the critical popsize N*(I, n, pg).
A more detailed evaluation of equation 15 can be found in [23].

MeanFit

60F __ Theory

----- Simulation (N=1024)
50 - - Simulation (N= 256)

— - Simulation (N= 64) P
40} .7
30¢f
20
10}

y Gen
0 10 20 30 40

Fig. 1. Mean fitness for theory and simulations for various N

3.2 Natural Selection

Natural selection is modelled by proportionate selection in quantitative genetics.
Proportionate selection is defined as follows. Let 0 < g;(t) < 1 be the proportion
of genotype ¢ in a population of size N at generation ¢, F; its fitness. Then the
phenotype distribution of the selected parents is given by
gi ()
s(t) = 17
glys() M(t) ()
where M (t) is the average fitness of the population

M(t) = Zgi(t)Fi (18)

Note that proportionate selection is also used by the simple genetic algorithm

[14].

Theorem 2. In proportionate selection the selection differential s given by

o (t)
Sty =-L 19
=T (19)
For the ONEMAX function of size n the response to selection is given by
R(t) =1-p() (20)

If the population is large enough, the number of generations until p(t) = 1 —¢
1s given for large n by
1 —
GENy_ ~n-In—2 (21)
€
po s the probability of the advantageous allele in the initial population.

Proof.

N

S(t) = pisFi — M(1)

i=1

L p(O)F? — pi()M2(1)
Z} M(D)

= i PO - MO

For ONEMAX(n) we have R(t + 1) = S(¢). Furthermore we approximate

o, (1) 2 np(t)(1 = p(t)) (22)

Because M (t) = np(t), equation 20 is obtained. From R(?) = n(p(t + 1) — p(t))
we get the difference equation

P+ =240 - Dy (23)

This equation has the solution

1(1+(1—l)+~~~+(1——)f—1)+(1_ 1)%

n n n n

p(t)

This equation can be simplified to

p(t) =1 (1= 1)1~ po)

By setting p(GEN;_.) = 1 — ¢ equation 21 is easily obtained. W

Remark: If we assume R(t) = S(¢) we obtain from equation 19 a version of
Fisher’s fundamental theorem of natural selection [12] [9].

By comparing truncation selection and proportionate selection one observes
that proportionate selection gets weaker when the population approaches the
optimum. An infinite population will need an infinite number of generations
for convergence. In contrast, with truncation selection the population will con-
verge in at most O(y/n) generations independent of the size of the population.
Therefore truncation selection as used by breeders is much more effective than
proportionate selection for optimization.

The major results of these investigations can be summarized as follows. A
genelic algorithm using recombination/crossover only is most efficient if run with
the minimal population size N* so that the population converges to the optimum.
Proportionate selection as used by the simple genetic algorithm is inefficient.

4 Statistics and Genetics

Central themes of plant and animal breeding as well as of genetic algorithms
can be phrased in statistical terms and can make substantial use of statistical
techniques. In fact, problems of breeding have been the driving forces behind the
development of statistics early in this century. The English school of biometry
introduced a variety of now standard statistical techniques, including those of
correlation and regression. In this section we will only prove the fundamental
theorem, which connects the rather artificial factor 6(¢) with the well known
regression coefficient of parent-offspring.

Theorem 3. Let X(t) = (x1(t),...xn(t)) be the population at generation t,
where x; denotes the phenotypic value of individual ©. Assume that an offspring
generation X'(t + 1) is created by random mating, without selection. If the re-
gression equation

zi(t) + (1)

l‘;j(t + 1) = a(t) + bxlx(t) . 7 + €5 (24)
with
E(Eij) =0
1s valid, where J:;»]» is the offspring of x; and x;, then
bxox (1) ~ b(t) (25)

Proof. From the regression equation we obtain for the averages
E((+1)) = a(t) + bxx (DM (1)

Because the offspring generation is created by random mating without selec-
tion, the expected average fitness remains constant

B (t+ 1) = M(t)

Let us now select a subset Xg(¢) C X(t) as parents. The parents are randomly
mated, producing the offspring generation X (¢ + 1). If the subset X (#) is large
enough, we may use the regression equation and get for the averages

E(e(t + 1)) = a(t) + bxix (1) * (M, (1) — M(2))
Subtracting the above equations we obtain

M(t+1) — M(t) = bxix (1)S(t)

For the proof we have used some additional statistical assumptions. It is
outside the scope of this paper to discuss these assumptions in detail.

The problem of computing a good regression coefficient 1s solved by the
theorem of Gauss-Markov. The proof can be found in any textbook on statistics.

Theorem4. A good estimate for the regression coefficient is given by

cov(@' (1), x(1))
xx(®) * var(z(t)) (26)
These two theorems allow the estimation of the factor 6(¢) without doing a
selection experiment. In quantitative genetics b(¢) is called the heritability of the
trait to be optimized. We have shown in [23] how to apply these theorems to the
breeder genetic algorithm.

5 Analysis of recombination and selection

In this section we will make a detailed analysis of selection and crossover by
simulations. First we will explain the performance of the crossover operator in
finite populations by a diagram. We will use ON EM AX as fitness function. In
figure 2 the number of generations GE N, until equilibrium and the size of the
population are displayed. At equilibrium the whole population consists of one
genotype only. The initial population was randomly generated with probability
po = 0.2 of the advantageous allele. The data are averages over 100 runs.

GEN
206

175¢

150 f|

125¢

100 f

75

50|

25}

Fig.2. GEN. vs population size N for pp = 0.2 and po = 0.5

The figure can be divided into three areas. The first area we name saturation
region. The population size is large enough so that the population converges to

the optimum value. In this area GEN, is constant. This is an important result,
because it is commonly believed in population genetics that GEN, increases
with the population size [19]. This is only the case in the second region. Here the
population size 1s too small. The population does not converge to the optimum.
G E N, increases with the population size because the quality of the final solution
gets better.

The two regions are separated by the critical population size N*. It is the
minimal population size so that the population converges to the optimum. N*
depends on the selection intensity I, the size of the problem and the initial pop-
ulation. The relation between N* and I is esspecially difficult. N* increases for
small selection intensities I and for large ones. The increase for large I can be
easily understood. If only one individual is selected as parent, then the popula-
tion converges in one generation. In this case the genotype of the optimum has
to be contained in the initial population. So the population size has to be very
large.

The increase of N* with small selection intensity is more difficult to un-
derstand. It 1s related to the genetic drift. It has been known for quite a time
that the population converges also without any kind of selection just because
of random sampling in a finite population. In [1] it has been shown that GEN,
increases proportional to the size of the population N and to the logarithm of
the size of the problem n. Thus GEN, is surprisingly small.

This important result demonstrates that chance alone is sufficient to drive
a finite population to an equilibrium. The formula has been proven for one gene
in [9]. Tt lead to the development of the neutral theory of evolution [19]. This
theory states that many aspects of natural evolution can be explained by neutral
mutations which got fixed because of the finite population size. Selection seems
to be not as important as previously thought for explaining natural evolution.

We are now able to understand why N* has to increase for small selection
intensities. The population will converge in a number of generations proportional
to the size of the population. Therefore the size of the population has to be large
enough that the best genotype i1s randomly generated during this time.

From G EN, the number of trials till convergence can be easily computed by

FE.=N-GEN,

In order to minimize F'F,, the BGA should be run with the minimal popsize
N*(I,n,pg). The problem of predicting N* is very difficult because the transition
from region 2 to the saturation region is very slow. In this paper we will only
make a qualitative comparison of mutation and crossover. Therefore a closed
expression for N* is not needed. In [23] some formulas for N* are derived.

The major results of this section can be summarized as follows: A gentic
algorithms with recombination/crossover is only effective in large populations. It
runs most efficiently with the critical population size N*(I,n,py). The response
to selection can be accurately predicted for the saturation region.

6 Analysis of Mutation

The mutation operator in small populations is well understood. The analysis of
mutation in large populations is more difficult. In principle it is just a problem
of statistics - doing N trials in parallel instead of a sequence. But the selection
converts the problem to a nonstandard statistical problem. We will solve this
problem by an extension of the response to selection equation.

In [21] we have computed the probability of a successful mutation for a single
individual. From this analysis the optimal mutation rate has been obtained. The
optimal mutation rate maximizes the probability of a success. We just state the
most important results.

Theorem 5. For the ONEMAX function of size n the optimal mutation rate m
1s proportional to the size of the problem.

1
m= —
n

This important result has been independently discovered several times. The
implications of this result to biology and to evolutionary algorithms have been
first investigated by Bremermann [6].

The performance of crossover was measured by GFE N, , the number of gener-
ations until equilibrium. This measure cannot be used for mutation because the
population will never converge to a unique genotype. Therefore we will use as
performance measure for mutation G EN,y;. It is defined as the average number
of generations till the optimum has been found for the first time. For a population
with two individuals (one parent and one offspring) GEN,,; has been computed
by a Markov chain analysis [21]. In this case GEN,p; is equal to FE,py, the
number of trials to reach the optimum.

Theorem 6. Let py be the probability of the advantageous allelle in the initial
string. Then the (1+1) evolutionary algorithm needs on the average the following
number of trials F'E,p;

(I1—po)n 1
FE,;=¢-n - (27)
. ; ;

to reach the optimum. The mutatlion rale is set tom = 1/n.

Proof. We only sketch the proof. Let the given string have one incorrect bit left.
Then the probability of switching this bit is given by

si=mx(l—m)" el -m (28)

The number of trials to obtain the optimum is given by e * 1/m. Similarly if
two bits are incorrect, then the number of trials needed to get one bit correct is
given by e/2 % 1/m. The total number is obtained by summation. W

For 0 < py < 0.9 the above equation can be approximated by
FEpi=e-n-ln((1—po)n) (29)

We have confirmed the formula by intensive simulations [21]. Recently Béck
[2] has shown that F'E,,; can be only marginally reduced if a theoretically opti-
mal variable mutation rate is used. This mutation rate depends on the number
of bits which are still wrong. This result has been predicted in [21]. Mutation
spends most of the time in adjusting the very last bits. But in this region the
optimal mutation rate is m = 1/n.

Next we will extend the analysis to large populations. First we will use simu-
lation results. In figure 3 the relation between GEN,py, F'Eyps, and the popsize
N 1is displayed for two selection methods. The selection thresholds are 7' = 50%
and the smallest one possible, T'= 1/N. In the latter case only the best individ-
ual is selected as parent. In large populations the strong selection outperforms
the fixed selection scheme by far. These results can easily be explained. The mu-
tation operator will change one bit on the average. The probability of a success
gets less the nearer the population comes to the optimum. Therefore the best
strategy is to take just the best individual as parent of the next generation.

10000

8000

6000

4000

2000

Fig.3. GENyp: and function evaluations (FE) for various N and different T’

From G EN,p; the expected number of trials needed to find the optimum can
be computed
FEopt == N . GENopt

For both selection methods, F F,,; increases linearly with N for large N.
The increase i1s much smaller for the strong selection. The smallest number of
function evaluations are obtained for N = 1,2,4.

We now turn to the theoretical analysis. It depends on an extension of the
response to selection equation.

Theorem 7. Let u; be the probability of a mutation success, imp the average
improvement of a successful mutation. Let v; be the probability that the offspring

1s worse than the parent, red the average reduction of the fitness. Then the
response to selection for small mutations in large populations s given by

R(t) = S(@) + uy - imp — vy - red (30)
S(t) is the average fitness of the selected parents.

Proof. Let M(t) be the average of the selected parents. Then

M@+ 1) = ue(Ms () + imp) + ve(Ms(t) — red) + (1 — uy — ve) M (1)
Subtracting M (t) from both sides of the equation we obtain the theorem. W

The response to selection equation for mutation contains no heritabelity. In-
stead there 1s an offset, defined by the difference of the probabilities of getting
better or worse. The importance of u; and v; has been independently discovered
by Schaffer et al. [26]. They did not use the difference of the probabilities, but
the quotient which they called the safety factor.

i
L

In order to apply the theorem we have to estimate S(t), u; and v;. The
last two variables can be estimated by using the results of [21]. The estimationn
needs the average number ¢ of wrong bits of the parent strings as input. But ¢ can
be easily transformed into a variable depending on the state of the population
at generation t. This variable is the marginal probability p(¢) that there is the
advantageous allele at a locus. p(t) was already used in the previous theorems.
i and p(t) are connected by

irn-(1—pl)=n— M(®) (31)

We have been not able to estimate S(t) analytically. For the next result we
have used simulations. Therefore we call it an empirical law.

Empirical Law 1 For the ONEMAX function, a truncation threshold of T' =
50%, a mutation rate of m = 1/n, and n > 1 the response {o selection of a large
population changing by mutation is approrimate

R(t) = 14 (1= p(t))e" D = p(t)e=01 770D (32

Proof. Let the parents have 1 bits wrong, let s; be the probability of a success by
mutation, f; be the probability of a defect mutation. s; is approximately given
by the product of changing at least one of the wrong bits and not changing the
correct bit [21]. Therfore

si=(L=m)"""(1 (1 -m))

Similarly ' '
fi=(@=m)y(1=(1—-m)"™)

From equation 31 and 1 — (1 — m)’ & i ¥ m we obtain

so= (1= p(O)(1 = 170

fi=p)(1 - %)n(l—p(t))

we get

s = (1 —p(t)) e7P®
f, = p(t)e—(l—p(t))

We are left with the problem to estimate imp and red. In a first approxima-
tion we set both to 1 because a mutation rate of m = 1/n changes one bit on the
average. We have not been able to estimate S(t) analytically. Simulations show
that for T'= 50% S(t) decreases from about 1.15 at the beginning to about 0.9
at GENyp¢. Therefore S(t) = 1 is a resonable approximation. This completes
the proof. W

1

n)n ~~ 6_1

Because (1 —

Equation 32 defines a difference equation for p(t + 1). We did not succeed
to solve i1t analytically. We have found that the following linear approximation
gives almost the same results

Empirical Law 2 Under the asssumptions of empirical law 1 the response to
selection can be approrimated by

R(t) = 2 - 2p(1) (33)
The number of generations until p(t) = 1 — € is reached is given by

1_
GEN,_. ~ g~ln po

(34)

€

Proof. The proof is identical to the proof of theorem 2.

In figure 4 the development of the mean fitness is shown. The simulations
have been done with two popsizes (N = 1024,64) and two mutation rates
(m = 1/n,4/n). The agreement between the theory and the simulation is very
good. The evolution of the mean fitness of the large population and the small
population is almost equal. This demonstrates that for mutation a large popu-
lation is inefficient.

A large mutation rate has an interesting effect. The mean fitness increases
faster at the beginning, but it never finds the optimum. This observation again
suggests to use a variable mutation rate. But we have already mentioned that
the increase in performance by using a variable mutation rate will be rather
small. Mutation spends most of its time in getting the last bits correct. But in
this region a mutation rate of m = 1/n is optimal.

The major results of this section can be summarized as follows: Mutation in
large populations is not effective. It is more cfficient with very strong selection.
The response to selection becomes very small when the population is approaching
the optimum. The cfficiency of the mutation operator critically depends on the
mutation rate.

MeanFit

60
50

40

30

— Simulation (N=1024, M=1/n)

-— Simulation (N=1024, M=4/n)

—— Simulation (N= 64, M=1/n)
- Simulation (N= 64, M=4/n)

20

10

Gen

0 20 40 60 80 100

Fig.4. Mean fitness for theory and simulations for various N and mutation probabili-
ties

7 Competition between Mutation and Crossover

The previous sections have qualitatively shown that the crossover operator and
the mutation operator are performing good in different regions of the parameter
space of the BGA. In figure 5 crossover and mutation are compared quantita-
tively for a popsize of N = 1024. The initial population was generated with
po = 1/64. The mean fitness of the population with mutation is larger than that
of the population with crossover until generation 18. Afterwards the population
with crossover performs better. This was predicted by the analysis.

MeanFit

60

50

—— Crossover

40 --- Mutation

30
20

10

80 100

Fig. 5. Comparison of mutation and crossover

The question now arises how to best combine mutation and crossover. This
can be done by two different methods at least. First one can try to use both
operators in a single genetic algorithm with their optimal parameter settings.
This means that a good mutation rate and a good population size has to be
predicted. This method is used for the standard breeder genetic algorithm BGA..
Results for popular test functions will be given later.

Another method is to apply a competition between subpopulations using
different strategies. Such a competition is in the spirit of population dynamics.
It is the foundation of the Distributed Breeder Genetic Algorithm.

Competition of strategies can be done on different levels, for example the
level of the individuals, the level of subpopulations or the level of populations.
Bick et al. [3] have implemented the adaptation of strategy parameters on the
individual level. The strategy parameters of the best individuals are recombined,
giving the new stepsize for the mutation. Herdy [17] uses an competition on the
population level. In this case whole populations are evaluated at certain intervals.
The strategies of the succesful populations proliferate, strategies in populations
with bad performance die out. Our adaptation lies between these two extreme
cases. The competition is done between subpopulations.

Competition requires a quality criterion to rate a group, a gain criterion to
reward or punish the groups, an evaluation interval, and a migration interval.
The evaluation interval gives each strategy the chance to demonstrate its perfor-
mance in a certain time window. By occasional migration of the best individuals
groups which performed badly are given a better chance for the next competi-
tion. The sizes of the subgoups have a lower limit. Therefore no strategy is lost.
The rationale behind this algorithm will be published separately.

In the experiments the mean fitness of the species was used as quality cri-
terion. The isolation interval was four generations, the migration interval eight
generations. The gain was four individuals. In the case of two groups the popu-
lation size of the better group increases by four, the population size of the worse
group decreases by four. If there are more than two groups competing, then a
proportional rating is used.

Figure 6 shows a competition race between two groups, one using mutation
only, the other crossing-over. The initial population was randomly generated with
po = 1/64. The initial population is far away from the optimum. Therefore first
the population using mutation only grows, then the crossover population takes
over. The first figure shows the mean fitness of the two groups. The migration
strategy ensures that the mean fitness of both populations are almost equal.

In figure 7 competition is done between three groups using different mutation
rates. At the beginning the group with the highest mutation rate grows, then
both the middle and the lowest mutation rate grow. At the end the lowest
mutation rate takes over. These experiments confirm the results of the previous
sections.

In the next section we will compare the efficiency of a BGA using mutation,
crossover and an optimal combination of both.

MeanFit N

1MAX, n=64 1MAX, n=64
60 60 Fr
501\, 50]) Y
40 Mutation 40 Mutation
300\ “-- Crossover 30H ~—- Crossover
20 20,
10 10
0 Gen
25 50 75 100 125 150 175 200
Fig.6. Competition between mutation and crossover
MeanFit N
1MAX, n=64 1MAX, n=64
60
50
40 ‘a\‘\
30} Uiot.,
20
10
0

Gen Gen
25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200

Fig. 7. Competition between different mutation rates

8 The Test Functions

The outcome of a comparison of mutation and crossover depends on the fitness
landscape. Therefore a carefully chosen set of test functions is necessary. We will
use test functions which we have theoretically analyzed in [21]. They are similar
to the test functions used by Schaffer [26]. The test suite consists of

ONEMAX(n)
MULTIMAX(n)
PLATEAU(k,])
SYMBASIN(k,])

DECEPTION(k,])

The fitness of ONEMAX is given by the number of 1’s in the string. MULTIM AX (n)
is similar to ONEM AX, but its global optima have exactly n/2 1's contained
in the string. It is defined as follows

T ?_ x;, < n/2
MULTIMAX(n, X) = {nzi_iﬁﬂ i %nj x; > n??

We have included the MU LTIM AX (n) function in the test suite to show the
dependence of the performance of the crossover operator on the fitness function.
MULTIMAX (n) poses no difficulty for mutation. Mutation will find one of
the many global optima in O(n) time. But crossover has difficulties when two
different optimal strings are recombined. This will lead with high probability to
a worse offspring. An example is shown below for n = 4

1100 @ 0011

With probability P = 10/16 will crossover create an offspring worse than
the midparent. The average fitness of an offspring is 3/2. Therefore the pop-
ulation will need many generations in order to converge. More precisely: The
number of generations between the time when an optimum is first found and
the convergence of the whole population is very high. MU LTIM AX is equal to
ONFEMAX away from the global optima. In this region the heritability 1s one.
When the population approaches the optima, the heritability drops sharply to
zero. The response to selection is almost 0.

For the PLATEAU function k bits have to be flipped in order that the fitness
increases by k. The DECEPTION function has been defined by Goldberg [16].
The fitness of DECEPTION(k,1) is given by the sum of [deceptive functions of
size k. A deceptive function and a smoothed version of order & = 3 is defined in
the following table

bit DECEP|SYMBA| bit| DECEP|SYMBA
111 30 30{100 14 14
101 0 26|010 22 22
110 0 22|001 26 26
011 0 14(000 28 28

A DECEPTION function has 2/ local maxima. Neighboring maxima are k
bits apart. Their fitness value differs by two. The basin of attraction of the global
optimum is of size k', the basin of attraction of the smallest optimum is of size
(2% — 1)!. The DECEPTION function is called deceptive because the search is
mislead to the wrong maximum (0,0, ...,0). The global optimum is particularly
isolated.

The SYMBASIN(k,I) function is like a deceptive function, but the basins of
attraction of the two peaks are equal. In the simulations we used the values given
in the above table for SYMBA.

9 Numerical Results

All simulations have been done with the breeder genetic algorithm BGA. In
order to keep the number of simulations small, several parameters were fixed.
The mutation rate was set to m = 1/n where n denotes the size of the problem.
The parents were selected with a truncation threshold of 7' = 35%. Sometimes

T = 50% was used.

In the following tables the average number of generations is reported which
are needed in order that the best individual is above a predefined fitness value.
With these values it is possible to imagine a type of race between the populations
using the different operators. Table 2 shows the results for ONEMAX of size 64.
FE denotes the number of function evaluations necessary to reach the optimum.
SD is the standard deviation of GEN, if crossover is applied only. In all other
cases it 18 G N,ps, the number of generations until the optimum was found.
The initial population was randomly generated with a probability pg = 0.5 that
there is a 1 at a locus. The numerical values are averages over 100 runs.

|OP | NJ48]56] 61] 62] 63] 64] SD| FE]
M 2[41]94[156]183[226]309] 82[618
M 64|18/40 65| 80|102|143| 56(9161
C* [64| 7[11] 15 15| 17[19] 1.1]1210
C |128) 5| 9] 12| 12| 13| 15]10.8/1898
M&C| 4[23[51] 81] 96[115[152] 47[608
M&C| 64) 7|13 17) 19) 20| 22| 2.1]2102

Table 2. ONEMAX(64); C* found optimum in 84 runs only

The simulations confirm the theory. Mutation in small populations is a very
effective search. But the variance SD of G'EN,p; is very high. Furthermore, the
success of mutation decreases when the population approaches the optimum. A
large population reduces the efficiency of a population using mutation. Crossover
is more predictable. The progress of the population is constant. But crossover
critically depends on the size of the population. The most efficient search 1s done
by the BGA using both mutation and crossover with a population size of N = 4.

In table 3 the initial population was generated farther away from the optimum
(po = 1/8). In this experiment, mutation in small populations is much more
efficient than crossover. But the combined search is also performing good.

|OP | NJ24[32] 62] 63] 64]SD| FE]
M 2[14]24]192[237[307] 85] 615
M 64| 8|16 96/117|161) 7210388
C* [256] 6] 9] 24] 25] 27[0.9] 6790
C [320] 6] 9] 24| 25| 26/0.9] 8369
M&C| 4[11]19]114]136]180[52[725
M&C| 64) 5| 8] 29 31) 34] 3| 2207

Table 3. ONEMAX(64); P, =1/8; Cx found optimum in 84 runs only

In table 4 results are presented for the PLATEAU function. The efficiency
of the small population with mutation is slightly worse than for ONEMAX. But
the efficiency of the large population is much better than for ONEMAX. This
can be easily explained. The large population is doing a random walk on the
plateau. The best efficiency has the BGA with mutation and crossover and a
popsize of N = 4.

|OP | NJ288] 291]294]297[300] SD| FE]
M 4] 27[42] 64] 95[184[107[737
M 64| 5| 8 13| 19| 31| 92064
C* [ed| 3] 4] 6] 7] 9] 1] 569
C 128 3| 4] 5| 6] 8] 11004
M&C| 4| 22[32.5] 49] 73[134] 63] 539
M&C| 64) 10 10| 10| 10| 12| 2| 793

[{=]

Table 4. PLATEAU(3,10); C* found optimum in 78 runs only

In table 5 results are shown for the DECEPTION(3,10) function.

|OP [NJ 283] 291] 294] 297] 300] SD| FE]
M 4] 419[3520[4721[6632[9797[4160[39192
M 16| 117| 550| 677| 827|1241| 595/19871
M |64] 35| 202| 266| 375| 573| 246|36714
C* 32 11
M&C | 4] 597(3480[4760[6550{9750(3127[38245
M&C |16] 150| 535| 625 775/1000| 389|16004
M&C*|64]1170

Table 5. DECEPTION(3,10);* stagnated far from optimum

We observe a new behavior. Mutation clearly outperforms uniform crossover.
But note that a popsize of N = 16 is twice as efficient as a popsize of N = 4.
The performance decreases till N = 1. Mutation is most efficient with a popsize
between 12 and 24. In very difficult fitness landscapes it pays off to try many
different searches in parallel. The BGA with crossover only does not come near
to the optimum. Furthermore, increasing the size of the population from 32 to
4000 gives worse result. This behavior of crossover dominates also the BGA with
mutation and crossover. The BGA does not find the optimum if it is run with
popsizes greater than 50. This is a very unpleasant fact. There exist only a small
range of popsizes where the BGA will find the optimum.

It is known that the above problem would vanish, if we use 1-point crossover
instead of uniform crossover. But then the results depend on the bit positions of
the deceptive function. For the ugly deceptive function [21] 1-point crossover per-
forms worse than uniform crossover. Therefore we will not discuss experiments
with 1-point crossover here.

The results for SYMBASIN are different. In table 6 the results are given. For
mutation this function is only slightly easier to optimize than the DECEPTION
function. Good results are achieved with popsizes between 8 and 64. But the
SYMBASIN function is a lot more easier to optimize for uniform crossover.
The BGA with mutation and crossover performs best. Increasing the popsize
decreases the number of generations needed to find the optimum.

|OP [NJ[283] 291] 294] 297] 300] SD| FE]
M 4] 41[1092]2150[3585]7404[4200]29621
M 16| 24| 125| 205| 391| 765| 530[12250
M 64| 18| 46| 68| 106| 221| 136[14172

c* 512 6| 16 18| 19| 20
C 2048| 4| 14| 15| 17| 18| 0.2(36741
M&C 4| 33|1642|2987|5537(9105|1183|36421
M&C| 16| 15| 95| 186| 331| 615 418| 9840
M&C| 64] 12| 33| 53| 90| 161] 158(10307

Table 6. SYMBASIN(3,10);C*: only 50% reached the optimum

The absolute performance of the BGA is impressive compared to other al-
gorithms. We will only mention ONEMAX and DECEPTION. For ONEMAX
the number of function evaluations needed to locate the optimum (F E,,;) scales
like e-n -In(n) (empirical law 1). Goldberg [15] observed a scaling of O(n!7) for
his best algorithm. To our knowledge the previous best results for DECEPTION
and uniform crossover have been achieved by the CHC algorithm of Eshelman
[10]. The CHC algorithm needed 20960 function evaluations to find the opti-
mum. The BGA needs about 16000 function evaluations. The efficiency can be
increased if steepest ascent hillclimbing is used [21].

In the last table we will show that the combination of mutation and crossover
gives also good results for continuous functions. In table 7 results for Rastrigin’s
function [22] are shown.

The results are similar to the results of the ONEMAX function. The reason
of this behavior has been explained in [22]. A BGA using mutation and discrete
recombination with a popsize of N = 4 performs most efficiently.

|[OP [N]1.0] .1].01[.001]SD] FE]
M | 4[594]636[691] 801] 40] 3205
M |64|139]176|225| 286 918316
M&C| 4[531]599[634] 720 38| 2881
M&C|64| 50) 66| 91| 123 7932

[{=]

w

Table 7. Rastrigin’s function (n = 10)

10 Conclusion

The theoretical analysis of evolutionary algorithms has suffered in the past from
the fact that the methods developed in quantitative genetics to understand es-
pecially artificial selection have been largely neglected. Many researchers still
believe that the schema theorem [14] is the foundation of the theory. But the
schema theorem is nothing else than a simple version of Fisher’s fundamental
theorem of natural selection. In population genetics 1t was discovered very early
that this theorem has very limited applications.

We have shown in this paper that the behaviour of evolutionary algorithms
can be well understood by the response to selection equation. It turned out that
the behaviour of the breeder genetic algorithm is already complex for one of
the most simple optimization functions, the ON EM AX function. This function
can play the same role for evolutionary algorithms as the ideal gas in thermody-
namics. For the ideal gas the thermodynamic laws can be theoretically derived.
The laws for real gases are extensions of the basic laws. In the same manner
the equations derived for ONEM AX will be extended for other optimization
functions. For this extension a statistical approach using the concept heritability
and the genotypic and phenotypic variance of the population can be used. This
approach is already used in the science of artificial breeding.

References

1. H. Asoh and H. Miithlenbein. On the mean convergence time of genetic populations
without selection. Technical report, GMD, Sankt Augustin, 1994.

2. Thomas Back. Optimal mutation rates in genetic search. In S. Forrest, editor, 5rd
Int. Conf. on Genetic Algorithms, pages 2-9, San Mateo, 1993. Morgan Kaufmann.

3. Thomas Back and Hans-Paul Schwefel. A Survey of Evolution Strategies. In
Proceedings of the Fourth International Conference of Genetic Algorithms, pages
2-9, San Diego, 1991. ICGA.

4. Thomas Back and Hans-Paul Schwefel. An Overview of Evolutionary Algorithms
for Parameter Optimization. Evolutionary Computation, 1:1-24, 1993.

5. R. K. Belew and L. Booker, editors. Procedings of the Fourth International Con-
ference on Genetic Algorithms, San Mateo, 1991. Morgan Kaufmann.

6. H.J. Bremermann, M. Rogson, and S. Salaff. Global properties of evolution pro-
cesses. In H.H. Pattee, editor, Natural Automata and Useful Simulations, pages
3-42, 1966.

7.

8.

10.

11.
12.
13.
14.
15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

M. G. Bulmer. "The Mathematical Theory of Quantitative Genetics”. Clarendon
Press, Oxford, 1980.

J. F. Crow. Basic Concepts in Population, Quantitative and Fvolutionary Genet-
tcs. Freeman, New York, 1986.

. J.F. Crow and M. Kimura. An Introduction to Population Genetics Theory.

Harper and Row, New York, 1970.

L.J. Eshelman. The CHC Adaptive Search Algorithm: How to Have Safe Search
when Engaging in Nontraditional Genetic Recombination. In G. Rawlins, editor,
Foundations of Genetic Algorithms, pages 265-283, San Mateo, 1991. Morgan-
Kaufman.

D. S. Falconer. Introduction to Quantitative Genetics. Longman, London, 1981.
R. A. Fisher. The Genetical Theory of Natural Selection. Dover, New York, 1958.
S. Forrest, editor. Procedings of the Fifth International Conference on Genetic
Algorithms, San Mateo, 1993. Morgan Kaufmann.

David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, Reading, 1989.

D.E. Goldberg. Genetic algorithms, noise, and the sizing of populations. Complex
Systems, 6:333-362, 1992.

D.E. Goldberg, K. Deb, and B. Korb. Messy genetic algorithms revisited: Studies
in mixed size and scale. Complex Systems, 4:415-444, 1990.

Michael Herdy. Reproductive Isolation as Strategy Parameter in Hierarchical Or-
ganized Evolution Strategies. In PPSN 2 Bruzelles, pages 207-217, September
1992.

J.H. Holland. Adaptation in Natural and Artificial Systems. Univ. of Michigan
Press, Ann Arbor, 1975.

M. Kimura. The neutral theory of molecular evolution. Cambridge University
Press, Cambridge University Press, 1983.

H. Mihlenbein, M. Gorges-Schleuter, and O. Kramer. Evolution Algorithms in
Combinatorial Optimization. Parallel Computing, 7:65-85, 1988.

Heinz Mihlenbein. Evolution in time and space - the parallel genetic algorithm. In
G. Rawlins, editor, Foundations of Genetic Algorithms, pages 316—337, San Mateo,
1991. Morgan-Kaufman.

Heinz Miihlenbein and Dirk Schlierkamp-Voosen. Predictive Models for the
Breeder Genetic Algorithm: Continuous Parameter Optimization. FEvolutionary
Computation, 1(1):25-49, 1993.

Heinz Muhlenbein and Dirk Schlierkamp-Voosen. The science of breeding and its
application to the breeder genetic algorithm. FEvolutionary Computation, 1(4):335—
360, 1994.

Ingo Rechenberg. FEuvolutionsstrategie - Optimierung technischer Systeme nach
Prinzipien der biologischen Information. Fromman Verlag, Freiburg, 1973.

H. Schaffer, editor. Procedings of the Third International Conference on Genetic
Algorithms, San Mateo, 1989. Morgan Kaufmann.

J.D. Schaffer and L.J. Eshelman. On crossover as an evolutionary viable strategy.
In R. K. Belew and L. Booker, editors, Procedings of the Fourth International Con-
ference on Genetic Algorithms, pages 61-68, San Mateo, 1991. Morgan Kaufmann.
H.-P. Schwefel. Numerical Optimization of Computer Models. Wiley, Chichester,
1981.

G. Syswerda. Uniform crossover in genetic algorithms. In H. Schaffer, editor, 3rd
Int. Conf. on Genetic Algorithms, pages 2-9, San Mateo, 1989. Morgan Kaufmann.

