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Abstract- FDA (the Factorized Distribution Algorithm)
is an evolutionary algorithm that combines mutation and
recombination by using a distribution. The distribution is
estimated from a set of selected points. It is then used to
generate new points for the next generation. In general a
distribution defined for n binary variables has 2™ param-
eters. Therefore it is too expensive to compute. For addi-
tively decomposed discrete functions (ADFs) there exists
an algorithm that factors the distribution into conditional
and marginal distributions, each of which can be com-
puted in polynomial time. Previously, we have shown a
convergence theorem for FDA. But it is only valid using
Boltzmann selection. Boltzmann selection was not used
in practice because a good annealing schedule was lack-
ing. Using a Taylor expansion of the average fitness of the
Boltzmann distribution, we have developed an adaptive
annealing schedule called SDS (standard deviation sched-
ule) that is introduced in this work. The inverse temper-
ature 3 is changed inversely proportional to the standard
deviation.

Keywords: genetic algorithms, simulated annealing, Boltz-
mann distribution, Boltzmann selection

1 Introduction

It is well known that certain evolutionary algorithms have
difficulties in optimizing functions with nonlinear interacting
variables. In order to optimize these functions, many vari-
ables have to be changed together in a certain manner to ob-
tain an improvement.

As all stochastic population-based algorithms can be de-
scribed with probability distributions, we have introduced a
generic framework for optimization using distributions. Sim-
ple genetic algorithms can then be described using a simple
product distribution.

In previous work [MMQ99], we introduced the FDA (Fac-
torized Distribution Algorithm) which uses a probability dis-
tribution that captures the dependencies between the vari-
ables. The Boltzmann distribution turned out to be espe-
cially suited for theoretical analysis. The distribution remains
a Boltzmann distribution after selection if Boltzmann selec-
tion is used. We have achieved a convergence result for this
algorithm. But the convergence theorem holds only for Boltz-
mann selection. This selection scheme is not used often be-
cause, similarly to simulated annealing, it needs an annealing
schedule, which is difficult to choose.

In this work, we make a Taylor expansion of the aver-

age fitness of the Boltzmann distribution. This allows us to
develop an efficient adaptive annealing schedule for popula-
tions. With this annealing schedule, FDA is invariant under
positive linear transformations of the function to optimize.

The outline of the paper is as follows. In section 2 the con-
cept of optimization using distributions is introduced. In sec-
tion 3, the Boltzmann distribution is defined and we discuss
why it is a suitable distribution for optimization. However,
in general, calculation of the Boltzmann distribution requires
exponential computational effort. In section 4, we describe
how to factorize the Boltzmann distribution to obtain a poly-
nomial algorithm. The expansion of the average fitness and
the resulting annealing schedule follow in section 5. Finally,
in section 6, we discuss two examples of the theory.

2 Optimization by distributions

Our goal is to optimize (maximize) a discrete function
flx)=f(z1,...,zy), called the fitness function. For nota-
tional simplicity, we consider binary variables z; € {0,1}
only. The domain of the function is thus R=2". Let M be
the set of optima (the optimum need not be unique).

All stochastic population-based optimization methods can
be expressed by a probability model, where a probability dis-
tribution p(z) describes the distribution of the individuals in
the search space R. Mutation, crossover, and selection then
become operators that transform these probability distribu-
tions [CF99]. Important for us are the marginal and condi-
tional probabilities of the distribution. The marginal distribu-

tions are defined as
> ) (1)

ylyi =

p(w;) == pi(z;) =

This definition can be extended naturally to sets of vari-
ables like p(z;, x;). Sometimes we will also write p(z; =1)
to denote the marginal frequency p;(1). When p(z;) > 0, we
can define the conditional probability

p(miv .Z’j)
o(z;) @

EDA, the Estimation of Distributions Algorithm, de-
scribes a general framework for this type of algorithms. First
we generate a population of search points using the uniform
distribution. Then we perform selection with these points,
based on the fitness (=function) value. In the next step, a dis-
tribution is estimated from the search points. This is usually
an approximation step, as an arbitrary distribution needs 2"

p(zi|zj) =



EDA - Estimation of Distributions Algorithm

1 Generate an initial population with NV individuals us-
ing the uniform distribution, ¢t < 1.

2 do{
3 Select N < N points.
4 Estimate the distribution p® (z, ¢) from the selected

points.

5 Generate new points according to p(z,t + 1) =
p°(@,1).

6 t<=t+1.

7} until (stopping criterion reached)

parameters. Finally, new points are generated from this dis-
tribution and the process is iterated.

We have shown that a simple genetic algorithm can be ap-
proximated by the UMDA (univariate marginal distribution
algorithm) [MMOO0]. The UMDA is an EDA using the sim-
ple product distribution

pz) = H:;l pi(ws)- ©)

EDA needs a selection method. This is also the step where
the fitness function is involved. In principle, any selec-
tion method from the history of genetic algorithms can be
used, like proportionate selection or truncation selection. But
the underlying distribution should also be considered when
choosing the selection method, as we will show in the next
section.

3 The Boltzmann distribution

The simple product distribution of UMDA cannot capture de-
pendencies between variables. When the exploitation of the
dependencies is required to find a global optimum, UMDA
and simple genetic algorithms fail. We need a more complex
distribution to reach this goal. A good candidate is the Boltz-
mann distribution.

Definition 1. For 5 > 0 define the Boltzmann distribution
of afunction f(z) as

)

@ .
=z W

where Z¢ () is the partition function. To simplify the nota-
tion g and/or f can be omitted.

The Boltzmann distribution is usually defined as
g(z)

e~ "t [/Z. The term g(z) is called the free energy and
T = 1/ the temperature. The Boltzmann distribution has
a number of properties, among them

ps,f(@) =

Lemmal. Letzx,, € M beaglobal optimum of the function
f(z) and z; apoint with f(z;) < f(x,). Then
® pg—o, istheuniformdistribution for any f.

e pa(xm) > pp(z;), for B > 0 theinequality is strict.
o Letg(z) := f(z) + c. Thenpg r(z) = pa,q(x).
o Letg(x) :=c- f(x). Thenpg ¢(x) = pes,r().

The third property means that the distribution is invari-
ant under addition of a constant. It is, however, not invariant
under multiplication. We will discuss how to overcome this
shortcoming in section 5.

The Boltzmann distribution is a suitable distribution for
optimization because it concentrates its weight with increas-
ing 3 around the global optima of the function. In theory, if it
were possible to sample efficiently from this distribution for
arbitrary 3, optimization would be trivial.

3.1 Boltzmann selection

Closely related to the Boltzmann distribution is Boltzmann
selection [dIMT93]:

Definition 2. Given a distribution p and a selection parame-
ter v, Boltzmann selection calculates the distribution of the
selected points according to

p(z)ef (@)

p’(z) = W ®)

Boltzmann selection is important because of the following
theorem:

Theorem 1. Let pg(x) bea Boltzmann distribution. If Boltz-
mann selection is used with parameter +, then the distribution
of the selected pointsis again a Boltzmann distribution with

e(ﬁ“l"Y)f(z)

Pie) = >, eI ©)

The (simple) proof can be found in [MMO99].
This allows us to define the BEDA (Boltzmann Estimated
Distribution Algorithm).

BEDA - Boltzmann Estimated Distribution Algorithm

1 t < 0. Generate N points according to the uniform
distribution p(z, 0) with 5(0) = 0.

2 do{

3 With a given Aj(t) > 0, let

t)elAB()f(z)
Ve eR: p’(z,t) = p(, t)e

- >, (Y, t)eAB®f(y)

4 Generate NV new points according to the distribu-
tion p(z,t + 1) = p*(x, t).

5 t<=t+1.

6 } until (stopping criterion reached)

BEDA is a conceptual algorithm because the calculation
of the distribution requires a sum over exponentially many
terms. We have proven the following important convergence
theorem for it:



Theorem 2 (Convergence). Let AS(t) be an annealing
schedule, i.e. for every ¢ the difference AS(t) between con-
secutive inverse temperature values 3. Then for BEDA the
distribution at time ¢ is given by

BB f(2)
S A0) "
with the inverse temperature
t
Bt) =D AB(7). ®)
T=1
If 5(t) — oo, then
lim p(z, 1) = {;/ M Z;M (©)

Proof: Let 2™ € M be a point with maximal fitness and
x ¢ Mapointwith f(z) < f(z™). Then
B f(x) B f ()
Pt = S @rm < TM]- p0rm)
< 1
= M| SOFE )]

(10)

As 3(t) — oo, p(x,t) converges (exponentially fast) to 0.
Because p(z,t) = p(y,t) for all z™,y™ € M, the limit
distribution is the uniform distribution on the set of optima. m

Equation (10) only shows that the distribution converges to
0 for non-optimal points. But we can also make an estimate
for the rate of convergence:

Lemma 2. Let there be a § such that for any non-optimal
point z we havewith z™ € M

flz) < f(a™) -0 (11)

Then

n-n2

)

Proof: Let | M| be the number of optima. The number of
terms in the partition function is smaller than 2™. For 2™ €
M we have with M := f(a™)

B2

ps(M) > 05 (12)

BsM BM

Pa(e™) = <y > :

— 9n . ) R

1 ! 1
= > 13
enln2—66+|M| = 2|M|’ ( )

So, to have pg(M) > 1/, we need
-2 —1In(2

enan—B(S S 2|M| o 6 Z n (I;( |M|) (14)
or as a sufficient condition (12). [

Corollary 1. For ahbinary fitness function with integer values
(so d=1), with 8 > 0.7n half of the generated points will
have maximum fitness, independent of the fitness function.

Without a schedule the corollary doesn’t explain very
much, as this value of g can be reached in any number of
steps. It can be used with fixed schedules, however, and as a
stopping criterion.

4 Factorization of the distribution

In this section we describe a method for computing a factor-
ization of the probability, given an additive decomposition of
the function:

Definition 3. Let sq,..., s, beindexsets, s; C {1,...,n}.
Let each f,, beafunction depending only on the variables z ;
with j € s;. Then

flz) = Z foi (@) (15)

is an additive decomposition of the fitness function f.
We also need the following definitions

Definition 4. Given sq, ..
the setsd;, b; and ¢;:

., Sm, Wedefinefori =1,... ,m

di = U S5, bl = 85; \ di—la Ci == S; n di_1 (16)
j=1

Weset dy = 0.

In the theory of decomposable graphs, d; are called histo-
ries, b; residuals, and ¢; separators [Lau96]. In [MMO99],
we have shown the following important

Theorem 3 (Factorization Theorem). Let p(z) be a Boltz-
mann distribution with

BE (@)

p(z) = Z:08) (17)

and f(z)= ;" fs, (x) bean additive decomposition. If

b,;é@ Vizl,...,l; dl:{l,...,n} (18)

then

p(@) =] plaslre) (20)

The constraint defined as equation (19) is called the run-
ning intersection property [Lau96].

With the help of the factorization theorem, we can turn
the conceptional algorithm BEDA into FDA, the Factorized
Distribution Algorithm [MMQO99].



FDA - Factorized Distribution Algorithm

1 Calculate b; and ¢; from the decomposition of the
function.

2 Generate an initial population with N individuals
from the uniform distribution.

3 do{
4 Select N < N individuals using Boltzmann selec-
tion.

5 Estimate the conditional probabilities p(zy, |z, , t)
from the selected points.

6 Generate new points according to p(z,t + 1) =
ITi%, o( 1)

7 t<=t+1.

} until (stopping criterion reached)

[ee]

As the factorized distribution is identical to the Boltz-
mann distribution if the conditions of the factorization theo-
rem are fulfilled, the convergence proof of BEDA also applies
to FDA.

Not every additive decomposition leads to a factorization
using the factorization theorem. In these cases, more so-
phisticated methods have to be used. FDA can also be used
with an approximate factorization. In [MMO00Q], we have used
Bayesian networks to describe the dependencies and used the
minimum description length [FG99] to calculate the network
and thus the factorization from the data, i.e. without prior
knowledge of a decomposition. This algorithm is called the
LFDA (Learning Factorized Distribution Algorithm).

For the following examples the theorem leads directly to a
factorization:

Example 1. For linear functions

Linear(z

Z ;T (21)

we have s; ={i} and thus all ¢; are empty. This leads to the
factorization

p(@) = [[ p(=:). (22)

As this is the distribution used by UMDA, FDA behaves like
UMDA (and thus like a simple genetic algorithm) for linear
functions.

Example 2. Functions with a chain-like interaction can also
be factorized:

Chain(x Z filziy, @) (23)
Here the factorization is
p(@) = p(a1) [ plailzi-i) (24)

=2

FDA can also be used with any other selection scheme, but
then the convergence proof is no longer valid. We think that
Boltzmann selection is an essential part in using the FDA.
This is even more true for the LFDA, because the theory
of learning the Bayesian network tries to gather independen-
cies from the data points. But these dependencies are exactly
the same as the ones implied by the additive decomposition
of the function defining the Boltzmann distribution [Lau96].
That means, if we start with a function fulfilling the factoriza-
tion theorem and generate points, then the learned model will
(with enough data points) lead to the same factorization as the
factorization theorem. But this is only true using Boltzmann
selection.

Because FDA uses finite samples of points to estimate the
conditional probabilities, convergence to the optimum will
depend on the size of the samples (the population size). FDA
has proven experimentally to be very successful on a number
of functions where standard genetic algorithms fail to find the
global optimum. In [MMB99], the scaling behaviour for var-
ious test functions has been studied. The estimation of the
probabilities and the generation of new points can be done in
polynomial time.

5 A new annealing schedule for the Boltzmann
distribution

Boltzmann selection needs an annealing schedule. Lemma 2
has shown how fast we have to anneal in order to reach con-
vergence within a given time frame. But if we anneal too fast,
the approximation of the Boltzmann due to the sampling er-
ror can be very bad. For an extreme case, if the annealing
parameter is very large, the second generation should consist
only of the global maxima.

In order to control the annealing schedule, we will make
a Taylor expansion of the average fitness of the Boltzmann
distribution.

5.1 Taylor expansion of the average fitness

For UMDA, we have shown that the average fithess com-
pletely determines the behaviour of the algorithm [MMO00].
In reference to S. Wright it is labelled 17/ :

Definition 5. The average fitness of a fitness function and a
distributionis

= f(@)p(x) (25)

For the Boltzmann distribution, we use the abbreviation
Wi (B) := Wy(ps,z)-

Theorem 4. The average fitness of the Boltzmann distribu-
tion W, () has the following expansion in 3:

+Z AB

i>1

Wi (B +AB) = in(8)  (26)



where M{ are the centred moments
Mi(B) =Y [f@) - W (B)]'p@)  (@7)

They can be calculated using the derivatives of the partition
function:

Z%(B)
Z:(B)

Proof: The k-th derivative of the partition function obeys for
k>0:

(4)
Mia) = (F) izl Mi—o @

Zf )relI e (29)

Thus the moments for k£ > 1 can be calculated as

I RV )
—;f( )'ole) = s (30)
and thus
W;(B) = My (B) = Z;(8)/Z; (8)- (31)

Direct evaluation of the derivatives of 17 leads to compli-
cated expressions. Therefore we consider the translated fit-
ness function f(z) : = f(z) + r. ps(x) is the associated
Boltzmann distribution, Z;, Mg, and T, the partition func-
tions, moments, and average fitness. Let C := e”". Then we
have with & > 1:

B) = VT = C. 7, (32)
B(f(z)+7) . eBf(x)

Pole) = g = g = me) 69

Z f B(f x)+r) (34)

=0 Z(8) 410 249 (35)
T

W7(9) = ,05) = 20 = M8) +r (36)

) PTG

e = (Z3) = wPhe @7)

WE(B) = S [(F@) + 1) — (Mi(8) + ] Bsle) (38)

— M (8) (39)

It follows that the derivatives of T¥ and the centered moments
don’t change if the fitness function is shifted.

Lemma 3. Iffor a 3* wehave Z}(8*) = 0, thenwith & > 1:

(Z}w*))"““ 200 (40)
Z1(5) Z1(5)

Proof: The proof is by induction. For k=1 it is true. As the
induction step we have

(Z}w*))“” _ (Zm*))““‘” " (Z“>(/3 ))’
Z5(5) Z5(5) 2:(5°)

_ 2 2t - 2y60)
Z5(57) Z;(B°)?
=0

In order to finish the proof we just have to put the
parts together. Let (3 be arbitrary, but fixed. With r :=
=Z3(B)/Z;(B) = —Mi(B) it follows Z(8) = 0. Then

we have M, (8) = My(B) +r = 0, hence
M (8) = My(B) (41)
Also we have with & > 1:
S (k) 5 (k+1)
< (k Z (B)
W(k) ) &0 b gy = (%,«(5)) (10) 25
D=0 =70 Z;(8)
D M1 (8) 2 0, () E Mg, (8)

The proof was done for a specific . As the first and the last
term do not depend on r, the equation holds universally. To-
gether with the Taylor expansion of W ;(§) the proof is fin-
ished. L]

(

Corollary 2. We have approximately
Wi (B) = Wi (B) + (B — ) - 07(B) (42)

where a}(ﬂ) is the variance of the distribution, defined as

UJ%(B) = M5 (5).
This approximation can also be found in [KGV83].

Lemma 4. The variance of the Boltzmann distribution obeys
f(x) # const. = o7(B) >0 (43)
Proof: We have Vz : pg(x) > 0. In order to have

o2(8) = S [f@) = W(B)]ps(x) =0,  (44)

T

we must have for all : f(x)=W} in contradiction to the
assumption. [

Corollary 3. With f(z) # const. we have

B> = Wi(B)>W(B) (45)

This important corollary tells us that the average fitness
is never decreasing for Boltzmann selection. A similar re-
sult was already obtained for proportional selection, see for
example [MMO00].



5.2 The new annealing schedule

From (42) we can derive an adaptive annealing schedule. The
variance (and the higher moments) can be estimated from the
generated points. As long as the approximation is valid, one
can choose a desired increase in the average fitness and set
B(t + 1) accordingly. So we can set

- o W) = W (B(1)
AB) =Bt +1) = B = —— =135

From (42) we see that choosing Aj proportional to the in-
verse of the variance leads in the approximation to a constant
increase in the average fitness. This is much too fast, espe-
cially near the optimum. As truncation selection has proven
to be a robust and efficient selection scheme, we can try to
approximate the behaviour of this method. For truncation se-
lection, one can show that the response to selection R f(t) is
approximately given by [Miih98]

(46)

Ry(t) = Wy (B(t + 1)) = Wy (B(1) ~ by o} (47)

I, is the selection intensity, depending on the truncation
threshold 7, and b is called heritability. Therefore, we will
use a schedule proportional to the inverse of the square root
of the variance:

Lemma5. Aj(t) = c/+/0}(5(t)) leads to an annealing
schedule where the average fitness increases approximatively
proportional to the standard deviation:

Ry(t) =Wy (B(t+1)) — W, (B(t)) (48)
~coy /o (B(t)) (49)

This annealing schedule is called SDS, the standard devia-
tion schedule.

We already know that FDA with Boltzmann selection re-
mains unchanged when we add a constant to the fitness func-
tion. Now we have additionally

Lemma 6. For Boltzmann selection with SDS, BEDA is in-
variant under linear transformations of the fitness function
with a positive factor.

Proof: This lemma is true because the standard devia-
tion scales linearly under multiplication. Let f(z) be a fit-
ness function, consider f(z) = ¢ - f(z). The claim is that
B(t) = B(t)/¢, then the distributions are the same for every
t. With t=0, 8 and 3 are 0, so it is true. Let now ¢ and
@:B(t) be given. From the previous iteration we know that
b =p/e.

According to lemma 1, we have ps (z) =p; ;

f
o3 (B) = ¢ -a]%(,é’). Hence we have A3(t)=AB(t)/¢. m

Corollary 4. Let o(t) := /o7 (5(t)), the standard devia-

tion. Then the response to selection for Boltzmann selection

with the SDS is given by

By(t) = 3 oo Mia (50)
i>1
2 c 3 c
:c-a(t)+2cg—](\f)32 %+... (51)

Note that this annealing schedule cannot be easily used for
simulated annealing, as the estimation of the variance of the
distribution requires samples that are independently drawn.
But the sequence of samples generated by simulated anneal-
ing are not independent.

6 Examples

The examples in this section are easy problems, but in these
cases the dynamics can be studied in detail.

6.1 The function OneMax

For f = OneMax we can calculate the Boltzmann distribu-
tion. We have

n

Zp(B) =) efll=3" (’Z) (eﬁ)i =1+eH" (52

i=0

All marginal distributions remain the same if started from the
uniform distribution.

Zi(B) - pa(zi=1) = Y el*l= i: (” - 1) Bli+1)

z,x1=1 =0 L
=é?. (1+ 65)”*1
and thus
T 14eB

ps(z1=1) : Ps (53)

With theorem 4 the average fitness W () can be calcu-

lated using 1W'; (8) = Z}(8)/ 24 (8):
<= n -ﬁg) (54)

_n(l+ef)te? nef
Wi (8) = (1+ef)yn 1+ef

The variance is given by (28):

2im 748  (Z4(8))2
o1(6) =z — (Z;(B))
3
ne ~ N
:m :n-pg(l—pg) (55)

We get the following difference equation for the inverse tem-
perature:

1+ef®

Blt+1)=p5(t) +c- NOEUlE

(56)



Higher moments can also be calculated, the response can
be approximated by

B2 /n _ 2 ("~ 1)
“ 2P +1)

Ry(t) =

= 7
cl+eﬁ + (57)

The annealing schedule uses only the first term in this expan-
sion, so we have

5/2\/_
€ n
Re(t) ~ 58
f( ) c 1+eP ( )
For a closed (approximative) solution we can convert the
difference equation into a differential equation and get
dg c 2c

i o® = N cosh(B(t)/2) (59)

The solution of the differential equation with 5(0) = 0 yields

c-t . m/n
= - < vV
B(t) = 4 argtanh [tan (%/ﬁ)} with ¢ < 5 (60)
where argtanh(z) = 1 In((1 + z)/(1 — z)). Together with
equation (53) we get

1 -1
Pat) = 5 (1 +sin <cﬁ>> (61)
If we compare this to previous results obtained for trunca-
tion selection [Miih98], we see that the dynamic equation (61)
is exactly the same. The constant ¢ now plays the role of I ...

So from the theory of truncation selection, we can get a suit-
able range for ¢, namely ¢ € [0.8,1.3].

1 T T T JL—F 1t 1
///+
0.9 I ////+ =
4/
0.8 - o N
o ,4/
0.7 /. .
06 / Simulation ~ + -
/ Theory -------

05 .1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9

Figure 1: Univariate marginal distribution for OneMax with
Boltzmann selection, n = 16

In figure 1, this theoretical result is compared to a simu-
lation run. The simulation was done using a population size
of 30000 individuals to get a good statistics, c=1, n=16.
The standard deviation needed for the schedule was estimated
from the population. The differences between theory and
simulation at the end are due to the simplification of using
a differential equation instead of the difference equation.

Gen || B-diff | g-deq | W;(B8) | AW | Rp(t —1)
0 0.00 | 0.00 | 32.00 | 0.00 0.00
1 0.25 | 0.25 | 3598 | 3.98 4.00
2 0.50 | 0.51 | 39.87 | 3.89 3.97
3 0.76 | 0.77 | 43.61 | 3.74 3.88
4 1.03 | 1.04 | 47.14 | 3.53 3.73
5 1.31 | 1.34 50.42 | 3.28 3.52
6 1.62 | 1.66 53.41 | 2.98 3.27
7 1.95 | 2.03 | 56.01 | 2.65 2.97
8 233 | 245 58.34 | 2.28 2.64
9 2,77 2.97 60.24 | 1.90 2.27

10 3.30 | 3.64 | 61.73 | 1.50 1.88
11 3.98 | 4.64 62.83 | 1.09 1.48
12 491 | 6.68 | 63.53 | 0.71 1.07
13 6.38 00 63.89 | 0.36 0.68
14 9.43 00 63.99 | 0.10 0.33
15 23.4 00 64.00 | 0.01 0.07

Table 1: Response to selection and inverse temperature for
OneMax (64).

This problem is studied in detail in table 1. Here the dif-
ferent approximations for 64 bits and ¢=1 were studied. In
the second and third column are the values of 5 according to
the difference equation and the differential equation. The ap-
proximation is very good in the beginning, but in the end the
two columns differ considerably.

The expected increase in average fitness is the first term
in the Taylor series, given by equation (58). It is shown in
the sixth column, whereas the fifth column shows the actual
increase by taking the difference of adjacent values in col-
umn 4.

4 T T T T T T ; 20
difference equ. |
differential equ. ------- 3
3 simulaton:p © } 415
< temp=1/8  x ,
2 ]
< |
g 2T " 410 =
(o8 |
g /
) ;
1r S 15
0 | 1 1 1 0
0 1 2 3 4 5 6 7 8 9
generations

Figure 2: 5(t) for OneMax(16), simulation versus theory

Figure 2 shows the resulting annealing schedule for 16
bits. Plotted are the inverse temperature 5 as well as the tem-
perature 1/3. The theoretical solution according to (56) are
shown with a simulation run. To compare we have also shown
the differential equation (60).

One can see that 3 grows almost linearly in the beginning,
while in the end the temperature goes to O linearly. Accord-
ing to lemma 2, for § > 11.2, half of the population should



consist of the global optimum. In the simulation run, the al-
gorithm terminates after reaching this value.

The results from the simulation remain very close to the
theoretically predicted values.

6.2 Linear functions

For linear functions

Linear(z

Z ;T (62)

the factorization of the Boltzmann distribution was calculated
in equation (22). We can also calculate the partition function
and get

n

Zp(B) = JJ (1 + ") (63)

i=1
and

6’80"'

pi(ﬁ) = pﬁ(iﬂz’:l) = W (64)
Furthermore, because of the nature of the distribution, the
variance is just the sum of the variance of the factors and we

have

n Boy
O =Y e ‘i;m Za pi(B)(1 - pi(B)) (65)
=1
and thus
B(t+1) = B(1) + c (66)

\/Zia?pi(ﬂ)(

By differentiating (64) we get
dpi(B)  ;ePi(1 4 ePoi)B — eBviq el
at (1 + ePei)2
=pi(B)(1 - pi(B)) s 22 (67)

Therefore we obtain the approximate differential equation

dpi(B) _ . pi(B) (1 = pi(B)) i

dt \/Zia?pi(ﬂ)(l - pi(B))
Note that the solution of these differential equations re-

main the same if we multiply all «; by a constant factor, as

predicted.

For OneMax we have a;; =1. In this case all marginal fre-
quencies are equal to pz. We obtain the differential equation

%ﬁ =c\/ps(1—ps)/n (69)

The solution of this equation is given by (61).

1—pi(B))

(68)

7 Conclusions

FDA has been shown to be an efficient optimization algo-
rithms when interactions between variables have to be con-
sidered to reach the global optimum. The convergence proof
of FDA requires that Boltzmann selection is used. But Boltz-
mann selection depends critically on a good annealing sched-
ule. Therefore we have previously used truncation selection.
We have now invented an adaptive annealing schedule SDS
that leads to an optimization algorithm that is almost as robust
as truncation selection and for which the convergence proof
remains valid.
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