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Abstract
FDA � the Factorized Distribution Algorithm � is an evolutionary algorithm which
combines mutation and recombination by using a distribution instead� The distri�
bution is estimated from a set of selected points� In general a discrete distribution
de�ned for n binary variables has �n parameters� Therefore it is too expensive to com�
pute� For additively decomposed discrete functions �ADFs� there exist algorithms
which factor the distribution into conditional and marginal distributions� This fac�
torization is used by FDA� The scaling of FDA is investigated theoretically and
numerically� The scaling depends on the ADF structure and the speci�c assignment
of function values� Di�cult functions on a chain or a tree structure are solved in
about O�n

p
n� operations� More standard genetic algorithms are not able to opti�

mize these functions� FDA is not restricted to exact factorizations� It also works for
approximate factorizations as is shown for a circle and a grid structure� By using
results from Bayes networks	 FDA is extended to LFDA� LFDA computes an ap�
proximate factorization using only the data	 not the ADF structure� The scaling of
LFDA is compared to the scaling of FDA�
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� Introduction

Numerically the de�ciencies of genetic algorithms using Mendelian string based recom	
bination methods have been �rst demonstrated with a simple class of �tness functions

called deceptive functions of order k� They are de�ned as a sum of more elementary
deceptive functions fk of k variables �Goldberg et al� ����

f�x� �

lX
j��

fk�sj�� ���

where sj are non	overlapping substrings of x containing k elements�
In a deceptive function the global optimum x � ��� � � � � �� is isolated
 whereas

the neighbors of the second best �tness value x � ��� � � � � �� have large �tness values�
Genetic algorithms �GAs� are �deceived� by the �tness distribution� Most GAs will
converge to x � ��� � � � � ���

Deceptive functions are separable� They are trivial to optimize by mathematical
methods� In this paper we consider functions which are additively decomposed �ADF�
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but they need not be separable� This class of functions is of great theoretical and prac	
tical importance� Optimization of an arbitrary function in this space is NP complete�

A number of new evolutionary algorithms have been proposed which optimize ADFs
better than genetic algorithms� These algorithms try to detect and exploit the structure
of an ADF� The methods used can be classi�ed as follows�

� Adaptive recombination

� Explicit detection of relations �Kargupta � Goldberg
 ���

� Dependency trees �Baluja � Davies
 ���

� Bivariate marginal distributions �Pelikan � M�uhlenbein
 ���

� Estimation of distributions �M�uhlenbein � Paa�����
 De Bonet et al�
 ����

Harik ���
 Pelikan et al� ����

Adaptive recombination uses a number of heuristics to modify two	parent recombi	
nation� Kargupta�s ���� Gene Expression Messy Genetic Algorithm �GEMGA� tries
to detect dependency relations by manipulating individual substrings�

The last three methods are based on probability theory and statistics� They use
the statistical information contained in the population of selected points to detect de	
pendencies� In this paper an algorithm called the Factorized Distribution Algorithm
�FDA� will be investigated� FDA uses a factorization of the distribution of selected
points� For Boltzmann distributions FDA is based on a solid mathematical founda	
tion� Many results can be derived by mathematical analysis� Therefore this paper is a
mixture between theoretical analysis and numerical experiments� The experiments are
mainly used to con�rm the theoretical analysis�

The outline of the paper is as follows� In Sections � and � some basic theorems
about factorization and FDA are cited� Then FDA is analyzed for large �in�nite� pop	
ulations� A comparison is made between Boltzmann selection and truncation selection�
In Section � �nite populations are investigated� The concept of critical population size
is introduced� Numerical results for an ADF test suite on simple regular ADFs are pre	
sented in Section �� The problem of computing a factorization of an ADF with unknown
structure is discussed in Section � with LFDA�

� Factorization Theorem

In this section we recall the main results proven in M�uhlenbein et al� ��a�� We use
the notation most common in statistics� Large symbols denote variables
 small symbols
assignments
 bold symbols are vectors� xs denotes the sub vector of X with indices
from s�

De�nition� An additively decomposed function �ADF� is de�ned by

f�x� �
X
si�S

fi�xsi � S � fs�� � � � � slg si �X� ���

Next we de�ne a search distribution� For theoretical analysis we will use a generaliza	
tion of a Gibbs or Boltzmann distribution�
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De�nition� The Gibbs or Boltzmann distribution of a function f is de�ned for u � �
by

p�x� ��
Expu f�x�

Fu
���

where for notational convenience

Expu f�x� �� uf�x� Fu ��
X
y

Expu f�y�

Remark� The Boltzmann distribution is usually de�ned as e�
g�x�
T �Z� The term g�x�

is called the energy� Setting g�x� � �f�x� and u � e
�
T gives Equation �� Z � Fu is

called the partition function�

The Boltzmann distribution has the following property� the larger the function
value f�x�
 the larger p�x� �for u � ��� Such a search distribution is obviously suitable
for an optimization problem� Unfortunately the computation of the Boltzmann distri	
bution needs an exponential e�ort �in the size of the problem�� There are at least two
approaches to reduce the computation� to approximate the Boltzmann distribution or
to look for ADFs where the distribution can be computed in polynomial time� The �rst
approach is used by Simulated Annealing �Aarts et al�
 ���� FDA is based on the sec	
ond approach� The distribution is factored into a product of marginal and conditional
probabilities� They are de�ned for bi� ci �X

p�xci� �
X
y

yci�xci

p�y� ���

p�xbi jxci� �
p�xbi � xci�

p�xci�
���

The basic factorization theorem uses the following sequence of sets as input�

De�nition� Given a set of sets S � fs�� � � � � slg� we de�ne for i � �� �� � � � � l sets di�bi
and ci

di ��
Si
j�� sj ���

bi �� si n di�� ���

ci �� si � di�� ���

We set d� � ��
In the theory of decomposable graphs
 di are called histories
 bi residuals and ci sepa�
rators �Lauritzen ����

Theorem � �Factorization Theorem�� Let p�x� be a Boltzmann distribution on X
with

p�x� �
Expu f�x�

Fu
with u � � arbitrarily� ��
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If

bi �� � �i � �� � � � � l� dl �X� ����

�i � � 	j � i such that ci � sj ����

then

p�x� �
lY

i��

p�xbi jxci� ����

The proof can be found in M�uhlenbein et al� ��a�� Equation �� is called the
running intersection property� The class of ADFs allowing an exact factorization which
can be computed in polynomial time in n is severely restricted� Many ADFs are de�ned
on a two dimensional grid� Here the sets needed for an exact factorization grow like
O�
p
n� where n is the number of variables of the grid� Therefore the computational

complexity scales exponentially�

� The Factorized Distribution Algorithm

We assume that an ADF and a factorization of the probability distribution is given� The
factorization can also be used at the initialization� For faster convergence a proportion
of r 
 N individuals will be generated with a local approximation of the conditional
marginal distributions� The method will be explained in Section ���

FDAr

� STEP �� Set t� �� Generate ��� r� 
N � � points randomly and r 
N points
according to Equation ���

� STEP �� Selection

� STEP 	� Compute the conditional probabilities ps�xbi jxci � t� using the selected
points�

� STEP 
� Generate a new population according to p�x� t��� �
Ql

i�� p
s�xbi jxci � t�

� STEP �� If termination criteria is met
 FINISH�

� STEP �� Add the best point of the previous generation to the generated points
�elitist��

� STEP � Set t� t� �� Go to STEP ��

FDA can be used with an exact or an approximate factorization� It uses �nite

samples of points� Convergence of FDA to the optimum will depend on the size of the
samples� FDA can be run with any popular selection method�
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�� Analysis of the Factorization Algorithm

The computational complexity of FDA depends on the factorization and the population
size N� The number of function evaluations to obtain a solution is given by

FE � GENe 
N ����

GENe denotes the number of generations till convergence� Convergence means that
p�x� t� �� � p�x� t�� The computational complexity of computing N new search points
is given by

compl�Npoints�  l 
N ����

The computational complexity of computing the probability is given by

compl�p�  �

lX
i��

�jsij� 
M ����

where jsij denotes the number of elements in set si
 and M is the number of selected
points� Therefore we obtain that the amount of computation of FDA mainly depends
on l
 the size of the de�ning sets si
 and the size of the selected population� In order
to exactly compute the probabilities an in�nite population is needed� But a numerical
e�cient FDA should use a minimal population size N� still giving good numerical
results� The computation of N� is a di�cult problem for any search method using a
population of points� This problem will be discussed in Section ��
We have implemented a simple factorization algorithm which computes a factorization
for any given ADF�

FDA � FAC

� STEP �� Set i��� Let �si be the sub	function which is maximally non	linear�
Non	linearity is de�ned as the square distance from the linear regression�

� STEP �� Compute �di ��
Si
j�� �sj �

� STEP 	� Select sk which has maximal overlap with �di and sk � �di �� ��

� STEP 
� If no set is found� STEP �

� STEP �� Set �si�� � sk
 i �� i� �� If i � l go to STEP ��

� STEP �� Compute the factorization using Equation � with sets �si�

For simple structures like chains or trees
 FDA	FAC computes an exact factoriza	
tion
 for complex structures an approximate factorization� To compute a factorization
with minimal complexity for an arbitrary ADF is a very di�cult task� We conjecture
that this problem is in NP � This research needs deep results from graph theory� The
problem of factorization of a probability distribution is also dealt with in the theory of
graphical models �Frey
 ����

Evolutionary Computation Volume � Number � �



H� M
UHLENBEIN AND TH� MAHNIG


�	 Generation of the Initial Population

Normally the initial population is generated randomly� But if an ADF is given
 initial
points can be generated using this information� The idea is to generate subsets xsi with
high local �tness values �i�e high fi� more often than subsets with lower values�

The following method has been implemented� The true Boltzmann distribution
p�x� is approximated by a distribution �p�x� which uses the same factorization as p�x��
But the conditional probabilities are computed using the local �tness functions fi only�

�p�xbi jxci� �
�p�xsi�

�p�xci�
��

Expu fi�xsi �P
ysi

yci�xci
Expu fi�ysi�

����

with u � �� The larger u
 the �steeper� the distribution� u � � yields a uniform
distribution� u can be chosen so that

�xsi � ysi �
�

��
� �p�xbi jxci�

�p�ybi jyci�
� �� i � �� �� � � � � l

by setting

span �� max
i

�
max
x�y

jfi�x�� fi�y�j
�

u �� ����span

Let us take the the function OneMax�n� �
P

xi as an example� Here we have the
factorization

p�x� �

nY
i��

p�xi�

FDA computes span � � and thus u � ��� This leads to

�p�xi � �� �
�

��
�p�xi � �� �

��

��

There will be ten times more �s than �s in the initial population�
Such an initial population might not give a Boltzmann distribution� Therefore

we generate only half of the population by this method� The other half is generated
randomly�

Next we will investigate FDA with Boltzmann selection and truncation selection in
in�nite populations�


�
 Convergence of FDA

M�uhlenbein et al� ��a� proved convergence of FDA if points are selected according
to a Boltzmann distribution with a given v � �� In this case the distribution ps of the
selected points is given by

ps�x� t� � p�x� t�
Expv f�x�P

x
p�x� t� Expv f�x�

����

One can easily show that if p�x� t� is a Boltzmann distribution
 then ps�x� t� is also a
Boltzmann distribution� Because FDA computes new search points according to

p�x� t� �� � ps�x� t��

the following theorem easily follows �M�uhlenbein et al� ��a���
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Theorem 	� If the initial points are distributed according to p�x� �� � Expu f�x�
Fu

with

u � �� then for FDA the distribution at generation t is given by

p�x� t� �
Expw f�x�P
y
Expw f�y�

����

with w � u � vt�
Remark� Boltzmann selection with �xed basis v � � de�nes an annealing schedule
with T �t� � ���t
 ln�v��ln�u��
 where t denotes the number of generations� Theorem �
remains valid for any annealing schedule with limt�� T �t� � ��

Theorem 
 �Convergence�� Let Xopt � fx�opt� x�opt� ��g be the set of optima� Then

under the assumptions of Theorem �

lim
t��

p�x� t� �

�
�

jXoptj
x � Xopt

� else
���

Therefore FDA with Boltzmann selection has a solid theoretical foundation� FDA
with Boltzmann selection can be seen as an �exact� simulated annealing algorithm�
Simulated annealing is controlled by two parameters  the number of trials N�T � for a
�xed temperature T and the annealing schedule of the temperatures� These two param	
eters are also important for FDA� FDA generates all N points for a given temperature
by using the Boltzmann distribution� Therefore N can be called the population size�
The second parameter of FDA remains the annealing schedule� We will investigate
in Section � the di�cult relation between N and annealing schedule for an e�cient
numerical algorithm�

Numerically truncation selection is easier to implement� It works as follows� Given
is a truncation threshold � � The best � 
N individuals are selected� We estimate the
conditional probabilities of the selected points ps�xbi jxci � t� from the empirical distribu	
tion� Then the factorization theorem is used to generate new search points according
to

p�x� t� �� �

lY
i��

ps�xbi jxci � t�

Now the following problem arises� After truncation selection the distribution is not a
Boltzmann distribution� Therefore in general

ps�x� t� ��
lY

i��

ps�xbi jxci � t�

Because of this inequality we might have p�xopt� t � �� � ps�xopt� t�� This makes a
convergence proof di�cult� For proportionate selection convergence has been shown by
M�uhlenbein and Mahnig ��b� for separable functions�
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� Theoretical Analysis for In�nite Populations

We will investigate two linear functions with very di�erent �tness distributions�

OneMaxn�x� �

nX
i��

xi ����

Intn�x� �

nX
i��

�i��xi ����

OneMax has �n � �� di�erent di�erent �tness values which are multinomially dis	
tributed� Int has �n di�erent �tness values� For ADFs the multinomial distribution is
�typical�
 i�e it occurs fairly often� The distribution generated by Int is more special�
Both functions are linear and therefore the following factorization is used

p�x� t� �� �
nY
i��

p�xi� t� ����

We �rst analyze OneMax� Using Equation �� we obtain�

Theorem �� For Boltzmann selection with basis v the probability distribution for

OneMax is given by

p�x� t� �
vtf�x�

�� � vt�n
����

The number of generations needed to generate the optimum with probability ��� is given
by

GEN� 
ln n

�

ln�v�
����

For truncation selection an approximate analysis was already done in �M�uhlenbein
et al� ���b�
 M�uhlenbein
 ������ For simplicity we assume that in the initial pop	
ulation all univariate marginal distributions are equal �pi�xi � �� t � �� �� p��� Then
pi�xi � �� t� �� p�t� for all t�

Theorem �� For truncation selection � with selection intensity I� the marginal proba�

bility p�t� obeys for OneMax

p�t� �� � p�t� �
I�
n

p
np�t���� p�t��� ����

This equation has the approximate solution

p�t� � ���

�
� � sin

�
I�p
n
t� arcsin��p� � ��

��
����

where

t �
�	
�
� arcsin��p� � ��

� pn
I�

The number of generations till convergence is given by

GENe �
�	
�
� arcsin��p� � ��

� pn
I�

� ����
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Figure �� Probability p�t� for OneMax����� with Truncation selection and Boltzmann
selection

The relation between � and I� depends on the �tness distribution �M�uhlenbein

���� Assuming that the �tness distribution is normal
 I� can be computed from the
error integral� We approximately obtain

I�  ���k for � � ��k � � k � �

Asymptotically truncation selection needs more number of generations to conver	
gence than Boltzmann selection� GENe is of order O�ln�n�� for Boltzmann selection and
of order O�

p
n� for truncation selection� But if the basis v is small �e�g� v � ����
 and

� � ���� then even for n � ���� truncation selection converges faster than Boltzmann
selection�

The di�erent behaviour of Boltzmann selection and truncation selection is shown in
Figure �� Equations �� and �� are plotted for reasonable values of v and I � For v � ���
Boltzmann selection selects slightly stronger than truncation selection with I � ���
at the beginning� Boltzmann selection gets weak when the population approaches the
optimum� The same behaviour can be observed for v � ���� In fact
 all selection
methods using proportionate or exponential proportionate selection have this problem�
If the �tness values in the population di�er only slightly
 selection gets weak� Truncation
selection does not have this problem� It selects much stronger than Boltzmann selection
when approaching the optimum� Therefore truncation selection with I � ��� converges
faster than Boltzmann selection for v � ����

Recall that Boltzmann selection with �xed v gives an annealing schedule of
��T �t� � t�ln�v�� The convergence of Boltzmann selection can be speeded up if the basis
v is changed during the run� But annealing schedules have to be discussed with �nite

populations� For in�nite populations strongest selection is obviously the best� For �nite
populations the computation of an optimal annealing schedule is very di�cult� This
will be discussed in the next section� Here we will only show that for OneMax FDA
with truncation selection also generates a Boltzmann distribution�
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Lemma� Let the distribution be generated by p�x� �
Qn

i�� p�xi�� Let p�xi � �� �� pi�
Then there exists T�� � � � � Tn with

�

Ti
� ln

pi
�� pi

����

so that for OneMax�n�

p�x� �
e
P

n
i��

xi
Ti

Z
���

Z is the partition function� de�ned by Z �
P

y
e
P

n
i�� xi�Ti �

Proof� We have to show that
Q
p�xi� � exp�

P xi
Ti
��Z� Because exp �ln�pi���� pi��� �

pi���� pi� one obtains

Z � � �
p�

�� p�
� � � �� pn

�� pn
�

p�p�
��� p����� p��

� � � ��
Q

i piQ
i��� pi�

This can be simpli�ed to

Z �
�Qn

i����� pi�

Noting that p�xi � �� � �� pi the conjecture follows�

Corollary If p� � � � � � pn �� p then p�x� is a Boltzmann distribution with

p�x� �
e
f�x�
T

Z
����

where

�

T
� ln

p

�� p
� ����

For p � ��� we have T � � and for p � � we get T � �� We can use Equation �� to
compute p�t�� Because the assumptions of Theorem � and of the corollary are identi	
cal
 FDA with truncation selection generates a Boltzmann distribution with annealing
schedule

�

T �t�
� ln

p�t�

�� p�t�
� ln

np��t�

np�t���� p�t��
� ln

!f��t�

n � V ar�t� � ����

The annealing schedule depends on the average �tness !f�t� and the variance V ar�t� of
the population� In Table � the schedule is shown for n � f��� ��� ���g� ��T �t� �rst
grows linearly in t� This is the standard annealing schedule� But ��T �t� increases non	
linear when approaching the optimum� For the �rst generation we have approximately
��T ���  �I��

p
n�

Let us now turn to the analysis of the function Int� We �rst consider truncation
selection with � � ��� and a large population size� After one generation of selection the
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t n � � n � �� n � ���
� ������ ������ ������
� ������ ������ ������
 ������ ����� �����
� ������ ������ ������
� ���� ������ ������
� ����� ������ �����
�� � ������ ������
�� ���� �����
�� ����� ������
� ������ ������
�� � ������
�� ������
�� ������
� �

Table �� Value of ��T �t� for OneMax and � � ���

n	th bit will be �xed� The other bits will not be a�ected by selection� After the next
generation bit �n� �� will be �xed etc� Convergence to the optimum is achieved after
n generations�

For truncation selection with � � ���� two bits will be �xed in every generation�
Convergence will be reached after n�� generations� Therefore we obtain for Int

Theorem � For truncation selection with � � ��k� k � � we have for Int

GENe �
n

k
����

Setting the selection intensity I� � k for � � ��k we obtain the same result as for
OneMax� GENe scales inversely proportionate to I� � But GENe scales proportionate
to the problem size n� This is the worst case
 as the following theorem shows�

Theorem �� Let the optimum be unique� Let the population size be very large �N � �n��
Assume that for truncation selection with � � ��k we have p�xopt� � ps�xopt�� Then

GENe � n

k
� ����

Proof� In an in�nite population the optimum is contained with probability ���n� After
one step of selection the probability will be increased at least to �k��n� In about n�k
steps the probability of the optimum has increased to ��

Next we analyze Boltzmann selection�

Theorem �� Let f�x� � Int�n�� Then for a Boltzmann distribution with v � � we

have

p��� � � � � �� ��  v��
v ����

p��� � � � � �� ��  v��
v� ����

Proof� By de�nition

p�x� �
vf�x�P
x
vf�x�

Evolutionary Computation Volume � Number � ��
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Observing that
P

x
vf�x� � � � v � v� � � � �� v�

n�� we obtain

X
vf�x� �

v�
n � �

v � �

Now the theorem easily follows�

The theorem shows that for Int the Boltzmann distribution is concentrated around the
optimum
 even for small values of v� For instance with v � ��� the global optimum is
contained with probability p � ����� in the population� Even a small v � ���� gives a
probability of about p � ���� for the optimum� Therefore the selected population has
a small diversity� In �nite populations this will cause a problem� Some genes will get
�xed to wrong alleles� This will be investigated next�

� Analysis of FDA for Finite Populations

In �nite populations convergence of FDA can only be probabilistic�

De�nition� Let � be given� Let Pconv�N� denote the probability that FDA with
a population size of N converges to the optima� Then the critical population size is
de�ned as

N���� � min
N

Pconv�N� � �� � ����

If FDA with a �nite population does not convergence to an optimum
 then a gene is
�xed to a wrong value� The probability of �xation is reduced if the population size is
increased� We obviously have for FDA

Pconv�N�� � Pconv�N�� N� � N�

We show the cumulative �xation probability in Table � for Int����� The �xation
probability is larger for stronger selection� For a given truncation selection the maximum
�xation probability is at generation � for very small N � For larger values of N the
�xation probability increases until a maximum is reached and then decreases again�
This behaviour has been observed for many �tness distributions�

Boltzmann selection with v � ���� gives a temperature of about T � ���� Even
for this temperature the selection is very strong for the �tness distribution given by
Int����� For N � ��� the largest �xation probability is still at the �rst generation�
Therefore the critical population size for Boltzmann selection for v � ���� is very high
�N� � ����� For truncation selection with � � ���� we have N������ � ���
Because Boltzmann selection in �nite populations critically depends on a good anneal	
ing schedule
 we normally run FDA with truncation selection� This selection method is
a good compromise� It has an important property
 which we formulate as an empirical
law� It has been con�rmed by many numerical experiments�

Empirical law� Let � be reasonable small
 e�g� � � ���� Then the number of genera	
tions to converge to the optimum remains constant for N � N�����

GENe�N
����� � GENe�N� � GENe�N ��� N � N���� ����
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� � ���� � � ��� � � ���� � � ��� Boltz� Boltz�
t N � � N � � N � �� N � �� N � ��� N � ���
� ������ ����� ��� ��� ������ ������
� ������ ������ ������ ������ ������ ������
 ������ ������ ������ ������ ����� ������
� ������ ������ ����� ����� ����� �����
� ������ ����� ������ ������ ���� ������
� ����� ����� ������ ����� ���� ������
� ����� ������ ������ ������ ����� ������
� ����� ������ ������ ������ ���� ������
� ����� ������ ������ ������ ����� ������

Table �� Cumulative �xation probability for Int����� Truncation selection vs� Boltz	
mann selection with v � �����

Truncation selection has a free parameter
 the truncation threshold � � It seems
obvious that the smaller the threshold � 
 the larger N� has to be� But numerical
experiments have shown that there exists a threshold �min which leads to a minimal
N�
min� This means that N� also increases for very low selection� The reason for this

phenomenon is genetic drift� Slow selection leads to a large number of generations which
increases the probability of gene �xation� This problem has been �rst investigated by
M�uhlenbein and Schlierkamp	Voosen ���b� for OneMax and genetic algorithms� A
more detailed investigation can be found in M�uhlenbein and Schlierkamp	Voosen �����

We denote the critical population size for given � by N���� ��� Because � is �xed

we omit � and write just N����� For Int we have approximately computed N���� by a
a Markov chain analysis� The Markov model was simpli�ed
 therefore we formulate the
result as a conjecture�

Conjecture� Let �k � ��k� For FDA with �tness function Int the critical population

size N���� is approximately given by

N���k�  N����� 
 � k��
� k � �

If N���� has been determined
 then an optimal truncation threshold �opt can be com	
puted� This threshold gives the minimum number of function evaluations FE�

De�nition� The optimum truncation threshold �opt is de�ned by

�opt � min
�

FE��� � min
�

GENe��� 
N���� ���

In general �opt is di�erent from �min which needs the minimal population size� The
following result follows from k � � from the above conjecture�

Empirical Law� For Int the optimal truncation threshold � is contained in the interval

"������ ���#�

Proof� Part of the result follows from the approximate formulas� For � � ��k we
obtain using the critical population size

FE  n

k

N����� 
 � k��

� � �p
� log�����

� k � � ����
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The empirical law has been investigated in detail by numerical experiments� The
determination of the optimal population size by simulations is very di�cult and error
prone� We have done extensive simulations for two distributions generated by OneMax
and Int� In Figure � the results are shown� The critical population size is determined
from the condition � � ���
 i�e� out of ���� runs �� �nd the optimum� The best
numerical �t was obtained by using ���� instead of ���	 for Int� For OneMax
 ���
 gave
a good �t�

These intensive simulations have been made to eliminate the truncation threshold
as a free parameter� We formulate our result as a rule�

Rule of Thumb�A good truncation threshold for FDA is �  ����

It is interesting to note that the problem of an optimal truncation threshold has
been also investigated for animal breeding� A discussion can be found in Robertson
������ Using a too simple model �in fact assuming an in�nite number of loci n� he
obtained that � � ��� should be the optimal threshold� This result is not in agreement
with our analysis
 but also not with actual selection experiments� Robertson �����
writes� In most selection programmes that are at all e�cient
 I� lies between � and ��
This corresponds to � � ��� and � � �����

Note that we have assumed that the population size remains �xed to N � It is
possible to reduce the function evaluations further by using di�erent population sizes at
each generation� But this is only a theoretical option
 because there are no techniques
known how to choose the population sizes�

We summarize our scaling results� Let a family of functions to be optimized be

de�ned for arbitrary n� For a given truncation threshold the function evaluations FE
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of FDA scale as the product of the number of generations to converge� GENe� and the

critical population size� N����� GENe can be bounded� It is less than n�� � normally it

will be of order O�
p
n�� The scaling of FDA mainly depends on N����� Unfortunately

the estimation of N���� is di�cult� even for linear functions�

	 Numerical Results

This section has two purposes� First
 we want to show that FDA behaves like the theory
predicts� Second
 we will show that it can solve di�cult optimization problems�
We will �rst investigate the conjecture concerning the number of generations until equi	
librium� In addition to F��x� � OneMax�n� the following two functions will be inves	
tigated

F��x� �

lX
i��

f��xsi � si � fx�i��� x�i��� x�ig

F��x� �

lX
i��

f��xsi � si � fx�i��� x�i��� x�ig

In F� we set f��xsi � to the values of the OneMax function of order three� F�
is thus identical to F�� But FDA will use a factorization which consists of marginal
distributions of size �� Thus the number of free parameters is more than twice as large�
For F� we set f���� �� �� � �� and all other values to zero�

Given our theory we expect the following results� GENe should be equal for F�
and F�� GENe should be smaller for F� because here FDA has to test only two main
alternatives $ ��� �� �� and all the rest� For FDA F� is just like a OneMax function of
size n��
 where the probability of generating the important substring ��� �� �� is smaller�
With random initialization the string with ��� �� �� will be generated with probability
p� � ������ For all cases the expected number of generations Gene can be computed
from Equation ���

n F� F� F� GENe�p� � ����� GENe�n�� p� � ������
� ��� ��� ��� ��� ���
�� ���� ���� ��� ���� ���
�� ���� ��� ���� ���� ����
��� ���� ���� ���� ���� ����
���GA ���� ���� ���
��� ���� ��� ���� ���� ���
��� ���� ���� ���� ���� ����

Table �� Generations until convergence
 truncation threshold ���

Note how precisely Equation �� predicts GENe obtained from actual simulation
with FDA� GA is a genetic algorithm with truncation selection and uniform crossover�
It needs slightly more generations for OneMax than UMDA� This was already observed
in �M�uhlenbein et al�
 ��b�� For the function F� the genetic algorithm needs almost
twice as many generations as FDA
 which has knowledge about the micro	structure of
F��
It is outside the scope of this paper to test FDA on an exhaustive set of typical functions�
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We have decided to use in this paper separable ADFs
 furthermore ADFs with a chain	
like structure
 a tree	like structure and a grid	like structure�

Given the structure
 di�erent sub	functions have been used to generate the test
function� The �rst function is a deceptive function of order three� It is de�ned as
follows� Let u denote the number of �s in the string� Then

fdec� �

	

�


�

�� for u � �
��� for u � �
��� for u � �
��� for u � �

Next we used a deceptive function of order �

fdec	 �

	�
�

��� ���i for u � i i � �
� for u � �
� for u � �

FDec	 is a separable function of subset size ��

FDec	 �

lX
i��

fdec	�x	i��� x	i��� x	i��� x	i��� x	i� ����

A di�cult function to optimize is IsoChain� It is de�ned as follows�

FIsoChain �

l��X
i��

Iso��x�i��� x�i� x�i��� � Iso��x�l��� x�l� x�l��� ����

u � � � �
Iso� l � � l � �
Iso� � � � l

with n � �l � �� The global optimum is ��� �� � � � � �� with value l 
 �l � �� � �� This
optimum is triggered by Iso�� It is very isolated� Six strings with leading zeroes give
the second best value of l�l� ��� These points are far away in Hamming distance from
the optimum� For this chain FDA	FAC computes the factorization

p�x� � p�x�� x�� x��p�x�� x	jx��p�x� x�jx	� � � � p�xn��� xnjxn���

Next we de�ne ADFs on a tree� The root is x�� The variable xi is linked with x�i
and x�i��
 the descendents� For every triple a sub	function of three variables is used

the deceptive function of order � in the case of FDec�Tree and functions Iso in the case
of FIsoTree� Thus

FIsoTree � Iso��x�� x�� x�� �

lX
i��

Iso��xi� x�i� x�i��� ����

FDec�Tree �

lX
i��

fdec��xi� x�i� x�i��� ����

�� Evolutionary Computation Volume � Number �



FDA � A SCALABLE EVOLUTIONARY ALGORITHM

We also included the function FCuban de�ned in �M�uhlenbein et al�
 �a�� This
function is de�ned on a chain� The de�nition of the function is di�cult
 so it will
be omitted� Two sub	functions are used alternating
 making this function di�cult to
optimize�

Furthermore we investigate two structures where FDA	FAC computes an approxi	
mate factorization only� A simple structure of this kind is the circle� FIsoCir is obtained
from FIsoChain by closing the chain to a circle�

FIsoCir �

l��X
i��

Iso��x�i��� x�i� x�i��� � Iso��x�l� x�l��� x�� ����

For this function our factorization algorithm determines the following factorization

p�x� � p�x�� x�� x��p�x�� x	jx�� � � � p�xn��� xn��jxn���p�xnjx�� xn��� ����

This factorization is not exact� It does not ful�ll the running intersection property� For
a circle an exact factorization can be theoretically derived�

p�x� � p�x�� x�� x�� xn�p�x�� x	jx�� xn� � � � p�xn��� xn��jxn��� xn� ����

The exact and the approximate factorization are not very di�erent� It turns out that
the numerical results for FIsoCir are almost identical to FIsoChain� Therefore they are
omitted�
The next test function is like IsoChain
 but de�ned on a torus of size n � m 
m� The
peak function IsoT� is used at the upper left corner of the torus� Let u denote the
number of ��s in a string�

FIsoTorus �IsoT��x��m�n� x����m� x�� x�� x��m� ����

�

nX
i��

IsoT��xup� xleft� xi� xright� xdown�

u � � � � � �
IsoT� m � � � � m� �
IsoT� � � � � � m�

where xup etc� is de�ned as the appropriate neighbor
 wrapping around� This function
is even more di�cult to optimize than IsoPeak� The best and second best strings have
values m��m�� and m��m� This means that their relative di�erence is much lower
than IsoPeak on a chain�

An exact factorization of an ADF on a grid or torus of size n � m� needs subsets
of size m� For an exact factorization the computational complexity of FDA scales
exponentially� Our FDA	FAC generated the following approximate factorization for
n � ����

p�x� � p�x�� x�� x��� x��� x���p�x�� x��� x��jx�� x��p�x��� x��jx�� x��� x���
� � � p�x��jx��� x��� x��� x
��
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Figure �� Number of generations until convergence

This factorization violates the running intersection property� The factorization does not
use the conditional probabilities for one row and one column� In this case the exact
and the approximate factorization are fairly di�erent� FDA nevertheless can �nd the
optimum
 because the approximate factorization is still able to generate the optimum�

This test suite covers ADFs de�ned on simple regular graphs� We did simulations
with a �xed parameter setting� Half of the population is initialized according to our
local heuristic
 the truncation threshold is set to � � ���� Only the population size N
varies� We tried to use for all simulations the optimal N���� in order to obtain the
lowest number of function evaluations�

The number of generations GENe needed to convergence is plotted in Figure ��
GENe is the smallest for IsoChain and IsoTree� In the middle we �nd OneMax� The
largest number of generations is needed for the function Cuban� In general GENe varies
only slightly from run to run� For all test functions it scales approximately like O�

p
n��

This con�rms the conjecture derived from the theoretical results�
In Table � we show the number of function evaluations FE
 de�ned as the product of
GENe and critical population size�

n OneMax IsoChain Dec� Cuban n DecTr� IsoTr� n IsoTo�
�� �� ��� ��� ��� � ���� ��� � ����
�� ��� ��� ��� ��� � ���� �� �� ����
��� ��� ���� ���� ����� ��� ���� ��� �� ����
��� ���� ��� ����� �� �����
�� ���� ���� ����� ����� ��� ����� ��� ��� �����
��� ���� ���� ���� ��� �����
��� ��� ����� ����� ������ ��� ����� ��� ��� �����

Table �� Number of function evaluations

For OneMax
 IsoTree
 Dec� and Dec�Tree we have a scaling of about O�n lnn��
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For IsoChain the scaling is about O�n
p
n�� There are not enough data points to

estimate the scaling of Cuban� For IsoTorus we conjecture despite some irregularities
a scaling of O�n���
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Figure �� Critical population size for � � ���

Figure � shows the critical population size for all functions� It was already men	
tioned that the computation of the critical population size by simulations is a very
di�cult numerical task� In order to reduce the error bars
 a huge number of runs have
to be made� Our criterion for the optimal population size has been that about �% of
the runs converge to the optimum �� � ����� We have made ���� runs for the cases
needing a small population size
 ��� runs for the medium sized problems and �� runs
only for the large problems� For all functions but IsoTorus and Cuban the critical
population size scales less than linear in n�


 LFDA � Computing a Bayes Factorization

The researchers of graphical models have already proposed several methods which de	
termine a factorization from the data� This problem is called learning� The interested
reader is referred to the book edited by Jordan ���� We will investigate the most
popular method developed for Bayes networks� In the context of optimization and FDA
this method has been �rst used by Pelikan et al� ����

In order to apply this method
 we have to recall that each factorization can be put
into a normal form
 where each variable occurs only once on the left side of a conditional
marginal distribution�

Theorem � �Bayes Factorization�� Each probability can be factored into

p�x� � p�x��

nY
i��

p�xijpai� ���
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Proof� By de�nition of conditional probabilities we have

p�x� � p�x��

nY
i��

p�xijx�� � � � � xi��� ����

Let pai � fx�� � � � � xi��g� If xi and fx�� � � � � xi��g n pai are conditional independent

we can simplify p�xijx�� � � � � xi��� � p�xijpai��

PAi are called the parents of variable Xi� Thus each Bayes factorization de�nes a
directed graph� In the context of graphical models the graph is called a Bayes network
�Jordan �����

We note that any FDA factorization ful�lling the running intersection property can
be put into a normal form� We just take a simple example� Let xbi � fxi� xk� xlg with
i � k � l� Then

p�xbi jxci� � p�xijxci�p�xk jxi� xci�p�xljxi� xj � xci�

Because of the running intersection property all variables of ci have an index less than
i� Therefore we obtain a valid normalized factorization�
We can now formulate the Bayes network learning problem� Given a population of

selected points M�t�� what is a good Bayes factorization �tting the data� The most
di�cult part of the problem is to de�ne a quality measure� The following discussion is
a short summary of �Bouckaert
 ���� The interested reader is also referred to the two
papers by Heckerman and Friedman et al� in �Jordan
 ���

For Bayesian networks two quality measures are most frequently used 	 the BDe
score and the Minimal Description Length �MDL� score� Let B denote a Bayes network

D the given data set and M � jDj its size� Then MDL is given by

MDL�B�D� � � ld�P �B�� �M �H�B�D� � �
�PA � ld�M� ����

with ld�x� �� log��x�� P �B� denotes the prior probability of network B
 PA �
P

i �
jpaij

gives the total number of probabilities to compute� H�B�D� is the conditional entropy
of the network structure B and data D� It is given by

H�B�D� � �
nX
i��

X
pai

X
xi

m�xi� pai�

M
ld
m�xi� pai�

m�pai�
����

where m�xi� pai� denotes the number of occurrences of xi given con�guration pai�
m�pai� �

P
xi
m�xi� pai�� If pai � �
 then m�xi� �� is set to the number of occurrences

of xi in D�
The term �

�PA � ld�M� models the computational cost of estimating the probabil	
ities� If no prior information is available
 P �B� is identical for all possible networks�
In this case the MDL measure assigns high quality to networks that �t the data with
as few arcs as possible� This principle is called Occam	s razor� It has been intensively
studied by Zhang and M�uhlenbein ���� for neural networks� In order to give more
weight to sparse Bayes networks
 we use a weight factor 
� Therefore our score is

BIC�B�D� 
� � �M �H�B�D�� 
PA � ld�M� ����
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This measure has been also proposed by Schwarz ����� as Bayesian Information Cri�

terion� To compute a network B� which maximizes BIC requires a search through the
space of all Bayes networks� Such a search is more expensive than to search for the
optima of the function� Therefore the following greedy algorithm has been used� kmax

is the maximum number of incoming edges allowed�

BN�
� kmax�

� STEP �� Start with an arc	less network�

� STEP �� Add the arc �xi� xj� which gives the maximum increase of BIC�
� if
jPAj j � kmax and adding the arc does not introduce a cycle�

� STEP 	� Stop if no arc is found�

Checking whether an arc would introduce a cycle can be easily done by maintaining for
each node a list of parents an ancestors
 i�e� parents of parents etc� �xi � xj� introduces
a cycle if xj is ancestor of xi�

The BOA algorithm of Pelikan et al� ��� uses the BDe score� This measure has
the following drawback �Bouckaert
 ���� It is more sensitive to coincidental correla	
tions implied by the data than the MDL measure� As a consequence
 the BDe measure
will prefer network structures with more arcs over simpler networks� The BIC measure
with 
 � � has also been proposed by Harik ���� But Harik allows only factorizations
with marginal distributions�

Given the BIC score we have several options to extend FDA to LFDA 	 the FDA
which learns a factorization� Due to limitations of space we can only show results
of an algorithm which computes a Bayes network at each generation using algorithm
BN����� kmax�� FDA and LFDA should behave fairly similar
 if LFDA computes factor	
izations which are in probability terms very similar to the FDA factorization� FDA uses
the same factorization for all generations
 whereas LFDA computes a new factorization
at each step which depends on the given data M�

All numerical experiments show that LFDA and FDA behave very similar in number
of generations to converge to the optima� The major di�erence occurs in the critical
population size� One expects that LFDA needs a larger population size
 because it has
to estimate the network structure� We �rst compare the critical population sizes for
three functions which are simple to optimize� The �rst function is OneMax
 the other
two functions are de�ned on a circle� We use two sub	functions

�� �� �� ��
fprisn � � � �
fprisl � � � �

Note that fprisl is a linear function� Both functions are used to generate the functions
FPrisl and FPrisn on a circle�

FPris �

n��X
i��

fpris�xi� xi��� � fpris�xn� x�� ����
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Figure �� Critical population size for FDA and LFDA

For a circle FDA	FAC computes the approximate factorization

p�x� � p�x�� x��p�x�jx�� � � � p�xn��jxn���p�xnjxn��� ����

LFDA computed factorizations with slightly more edges� We expect the following re	
sults� The critical population size of FDA for OneMax is smaller than the critical
population size for FPris� There will be no di�erence between FPrisl and FPrisn
 be	
cause FDA will use the same factorization� The critical population size of LFDA will
be higher than of FDA� There will be almost no di�erence between the three functions

because LFDA will for all three compute a very similar Bayes network�

The actual results are shown in Figure �� They con�rm the expectations� For FPris
we observe the relation N�

LFDA � �N�
FDA�

LFDA is computationally much more expansive than FDA� First
 the heuristic
BN�
� kmax� is only needed for LFDA� This computation is cubic in n� Second
 LFDA
needs a larger critical population size N��

Table � gives results for ADFs de�ned on a chain with �
�
 and � neighbors� The
size of the problem is n � ���

Chain� ms Chain� ms Chain� ms
FDA �� �� ��� �� ���� ����

LFDA ��� ��� ���� ��� ����� �����

Table �� Critical population sizes and computation time �ms� for FDA and LFDA

The computational time ms can be reduced by optimizing the LFDA program� But
the critical population sizeN� cannot be reduced for LFDA� Unfortunately the more pa	
rameter the network has
 the larger the factor N�

LFDA�N
�
FDA gets� The factor increases

from � for Chain� to almost � for Chain�� This empirical result con�rms the conjec	
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ture
 that learning of structures will be computationally very expensive �M�uhlenbein et
al�
 �a��

� Conclusion

The Factorized Distribution Algorithm FDA converges to the optima of the �tness func	
tion if Boltzmann selection is used� But Boltzmann selection has numerical drawbacks�
For computational e�ciency a good annealing schedule has to be determined for each
problem� This is very di�cult� A much simpler selection method is truncation selection
as used by breeders� We showed for a representative �tness distribution that FDA with
truncation selection behaves identical to FDA with a certain annealing schedule�

FDA is a true evolutionary algorithm� The population at generation t is used to
generate the population at generation t � �� The population at generation t� � is not
used for generation t � �� There is no memory involved� The ADF decomposition is
only used to compute a factorization of the distribution� The factorization is exact or
approximate
 depending on the ADF� FDA is depending on one parameter only� This
is the population size N � The more di�cult the optimization of the function is
 the
larger N has to be� We will try to develop methods where the population size can be
adjusted during a run�

FDA uses the ADF structure to compute a factorization of the distribution� We
have extended FDA to LFDA
 which computes a Bayes factorization from the data
without knowledge of the ADF structure� LFDA gave surprisingly good results
 even
for fairly complex structures� But for complex ADF structures LFDA is much more
computationally expensive than FDA� There is lots of research to be done in improving
LFDA�
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