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Abstract
Estimation of Distribution Algorithms (EDAs) have been proposed as an extension
of genetic algorithms. We assume that the function to be optimized is additively de-
composed (ADF). The interaction graph of the ADF is used to create exact or approxi-
mate factorizations of the Boltzmann distribution. Convergence of the algorithm MN-
GIBBS is proven. MN-GIBBS uses a Markov network easily derived from the ADF
and Gibbs sampling. The Factorized Distribution Algorithm (FDA) uses a less general
representation , a Bayesian network and probabilistic logic sampling (PLS). We shortly
describe the algorithm LFDA which learns a Bayesian network from data. The rela-
tion between the network computed by LFDA and the optimal network used by FDA
is investigated. Convergence of FDA to the optima is shown for finite samples if the
factorization fulfills the running intersection property. The sample size is bounded by
O(nm lnnm) where n is the size of the problem and m the number of sub-functions.
For the proof results from statistical learning theory and Probably Approximately Cor-
rect (PAC) learning are used. Numerical experiments show that even for difficult test
functions a sample size which scales linearly with n is often sufficient. We also show
that a good approximation of the true distribution is not necessary, it suffices to use a
factorization where the global optima have a large enough probability. This explains
the success of EDAs in practical applications.
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1 Introduction

The Estimation of Distribution Algorithm (EDA) family of population based optimiza-
tion algorithms was introduced by Mühlenbein and Paaß (1996) as an an extension of
genetic algorithms. They address the problem that the search distributions implicitly
generated by genetic algorithms through recombination and crossover do not exploit
the correlation of the variables in samples of high fitness values. Therefore genetic
algorithms have difficulties in solving these problems.

EDAs use probability distributions derived from the function to be optimized to
generate search points instead of crossover and mutation as done by genetic algo-
rithms. The other parts of the algorithms are identical. In both cases a population
of points is used and points with good fitness are selected either to estimate a search
distribution or to be used for crossover and mutation.

Today two major branches of EDAs can be distinguished. In the first branch a
factorization of the distribution is computed from the mathematical expression of the
function to be optimized, in the second one the factorization is computed from the
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correlations of the variables in samples of points with high fitness (learning). Most re-
searchers concentrate on learning. But here it is difficult to prove convergence to the op-
tima. Therefore the papers mainly contain experimental results with some theoretical
extrapolations. This is unfortunate, because for EDAs using optimal graphical models
lots of theoretical results are available. In any case, a comparison between the results
of EDAs using learning with the corresponding algorithm using an optimal graphical
model should always be made.

In this paper we first analyze EDAs where the graphical model is derived from
the structure of the function. Two different graphical representations are investigated,
Markov networks and the more restricted class of Bayesian networks. For both repre-
sentations algorithms are presented, the Markov network algorithm MN-GIBBS and
the Factorized Distribution Algorithm FDA. We then discuss algorithms learning the
graphical model.

The outline of the paper is as follows. In section 2 we introduce the Boltzmann
distribution. Then factorizations of the distribution are discussed. For additively de-
composed functions (ADFs) a factor graph (Kschischang et al., 2001) can easily be com-
puted. The factor graph defines a Markov network. The algorithm MN-GIBBS is in-
vestigated which uses Gibbs sampling to generate samples of the distribution. A general
convergence theorem is proven for MN-GIBBS. Gibbs sampling is computationally ex-
pensive, so in section 3 the well-known FDA is shortly reviewed. FDA uses Bayesian
networks as graphical models which can be sampled by probabilistic logic sampling. In
section 4 we describe some algorithms which learn a graphical models from a sample
of promising points.

In section 5 we derive an upper bound on the sample size needed for FDA to
converge to the global optima. The bound is derived using the theory developed in
Probably Approximately Correct (PAC) learning (Kearns and Vazirani, 1994).

The similarity between the factorizations computed by FDA and the learning al-
gorithm LFDA is numerically investigated in section 6. We discuss what characterizes
a good factorization for EDAs. Numerical results are presented in section 7.

A good introduction to early EDA research can be found in the book of Larrañaga
and Lozano (2002). This paper concentrates on convergence theorems for EDAs. It
also covers important design issues for EDAs. From theoretical considerations the al-
gorithm MN-GIBBS is highly recommended.

There exist a huge literature about Markov networks and PAC learning. We as-
sume that the reader is familiar with these subjects. This paper is intended to provide
understanding and insight, therefore many examples are included. Proofs are omitted
if they are only technical or can be found in easily accessible papers.

2 Convergence theory for infinite samples

We will use in this paper the following notation. Capital letters denote variables, lower
cases instances of variables. If the distinction between variables and instances is not
necessary, we will use lower case letters. Vectors are denoted by x, a single variable by
xi. We consider discrete variables only.
Let a function f : X → IR be given. We consider the discrete optimization problem

xopt = argmaxf(x) (1)

A good candidate for optimization using a search distribution is the Boltzmann distri-
bution.
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Convergence of EDAs for Infinite and Finite Samples

Definition 1 For β ≥ 0 the Boltzmann distribution1 of a function f(x) is defined as

pβ(x) :=
eβf(x)

∑
y e

βf(y)
=:

eβf(x)

Zf (β)
(2)

where Zf (β) is the partition function.

The Boltzmann distribution concentrates with increasing β around the global op-
tima of the function. Obviously, the distribution converges for β →∞ to a distribution
where only the optima have a probability greater than 0 (Mühlenbein and Mahnig,
2002b). Therefore, if it were possible to sample efficiently from this distribution for
arbitrary β, optimization would be an easy task. But the computation of the partition
function usually needs an exponential effort for a problem of n variables. We have
therefore proposed an algorithm which incrementally computes the Boltzmann distri-
bution from empirical data using Boltzmann selection.

Definition 2 Given a distribution p and a selection parameter ∆β, Boltzmann selection cal-
culates the distribution for selecting points according to

ps(x) =
p(x)e∆βf(x)

∑
y p(y)e∆βf(y)

(3)

The following theorem has been proven by Mühlenbein and Mahnig (2003).

Theorem 1 If pβ(x) is a Boltzmann distribution, then ps(x) is a Boltzmann distribution with
inverse temperature β(t+ 1) = β(t) + ∆β(t).

The following algorithm is called BEDA, the Boltzmann Estimated Distribution Algo-
rithm.

BEDA

• STEP 0: t⇐ 0. GenerateN points according to the uniform distribution (β(0) = 0).

• STEP 1: With a given ∆β(t) > 0 do Boltzmann selection giving the distribution
ps(xt).

• STEP 2: Generate N new points according to the distribution p(xt+1) = ps(xt).

• STEP 3: If termination criteria fulfilled, STOP.

• STEP 4: t⇐ t+ 1. GOTO STEP 1.

The following convergence theorem has been proven by Mühlenbein et al. (1999).

Theorem 2 For
∑
t ∆β(t) → ∞ and infinite populations BEDA converges to a distribution

where only the global optima have a probability greater than zero.

BEDA is only a conceptional algorithm, because the calculation of the distribution
ps(xt) requires a sum over exponentially many terms. In order to compute the distri-
bution more efficiently, it has to be factorized. This can be done if the fitness function
is additively decomposed.

1The Boltzmann distribution is usually defined as e−
E(x)
T /Z. The term E(x) is called the energy and

T = 1/β the temperature. We use the inverse temperature β instead of the temperature.
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Definition 3 Let S1, . . . , Sm, Si ⊆ {1, . . . , n} be index sets. Let fi be functions depending
only on the variables of Si. We denote these variables xsi . Si is called the scope of fi. Then

f(x) =
m∑

i=1

fi(xsi) (4)

is an additive decomposition of the fitness function (ADF).
Definition 4 Given an ADF, the interaction graph GADF

2 is defined as follows: The vertices
represent the variables of the ADF . Two vertices are connected by an edge iff the corresponding
variables are contained in the same sub-function.
Remark: The class ADF covers all possible functions. In order to obtain algorithms of
polynomial complexity we will later restrict the class. We will assume that the size of
the scopes is bounded by a constant independently of n.

2.1 A convergence theorem for factor graphs
In this section we investigate how to efficiently compute and sample the Boltzmann dis-
tribution for ADFs. The idea is to factorize the distribution into a product of conditional
marginal distributions. The most natural graphical representations of the structure of
ADFs are factor graphs (Kschischang et al., 2001).
Definition 5 A factor graphFG is a graph with two kinds of vertices, the set of factors {Fj}mj=1

with scopes {Sj}mj=1, and the set of random variables X = {X1, . . . , Xn}. Each variable is
connected to those factors where it is contained in the scope. The Gibbs distribution of FG is
defined as

pG(x) =
1

Z

m∏

j=1

Fj(xsj ) (5)

The Gibbs distribution defines a Markov network or Markov random field on the variables
(Pearl, 1988).
The Boltzmann distribution of an ADF can easily be written as a Gibbs distribution.

pβ(x) =
1

Zf (β)
eβ
Pm
j=1 fj(xsj ) =

1

Zf (β)

m∏

i=1

eβfj(xsj ) (6)

Now set Fj(xsj ) = eβfj(xsj ) and a Gibbs distribution is obtained which is identical to
the Boltzmann distribution. Therefore the BEDA convergence theorem remains valid
for factor graphs.

Because the computation of Z is exponential in n, the above factorization is no
improvement at first sight. But sampling from a Gibbs distribution can be done using
local computations only. The method is called random Gibbs sampling (Geman and Ge-
man, 1984; Pearl, 1988).3 In order to understand Gibbs sampling, the concept Markov
blanket is needed, the minimal set of variables that separate all variables of a given set
D from the other variables in the graph.
Definition 6 (Markov Blanket (Pearl, 1988)) Let a set of scopes Sj be given. The Markov
blanket of a set of variables D ⊆ X is defined as

MB(D) =
⋃
{Sj : Sj ∈ S, Sj ∩D 6= ∅} \D (7)

2Xiang et al. (1997) call it a decomposable Markov graph.
3Pearl (1988) calls it stochastic simulation.
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Convergence of EDAs for Infinite and Finite Samples

Random Gibbs Sampling

• STEP 0: Generate x0 = (x0
1, . . . , x

0
n) randomly. Set t = 0.

• STEP 1: Choose an index i randomly.

• STEP 2: Sample xt+1
i using p(xi|MB(Xi))

• STEP 3: Set xt+1 = (xt1, . . . , x
t+1
i , . . . xtn).

• STEP 4: t:= t+1; If t ≤Max goto STEP 1.

Example 1:
f(x) = f1(x1, x2) + f2(x2, x3) + f3(x3, x4) + f4(x4, x1) (8)

The dependencies of GADF form a loop. We have

S1 = {X1, X2}, S2 = {X2, X3}, S3 = {X3, X4}, S4 = {X4, X1}

Sequential Gibbs sampling would proceed as follows

p(xt1|xt−1
2 , xt−1

4 ), p(xt2|xt1, xt−1
3 ), p(xt3|xt2, xt−1

4 ), p(xt4|xt3, xt1)

Gibbs sampling uses only local computations. If the size of the Markov blankets is
bounded polynomially the computational complexity of one iteration is polynomially
bounded. The first samples (until t = t0) are usually thrown away. Instead of updating
a single variable, it is possible to update a set of variables. This is called blocked Gibbs
sampling. Given a set D the Gibbs sampling formula has to be changed in STEP 2:

• STEP 2: Sample xt+1
D using p(xD |MB(D))

We now prove that Gibbs sampling converges to the true distribution.

Theorem 3 (Convergence) LetFG be the factor graph corresponding to the given ADF. Then
Gibbs sampling converges to the true Gibbs distribution if all conditionals are greater than zero.

Proof: The proof is based on two basic theorems in the field of Markov chains and
Markov random fields. We recall

Definition 7 The stochastic process X (i) = (x1, . . . , xn) is called a Markov chain if

p(X(i)|X(i−1), . . . , X(0)) = T (X(i)|X(i−1)) (9)

T is called the transition matrix. The transition to X (i) depends only on the states
ofX(i−1). The interested reader is referred to Andrieux et al. (2003); Geman and Geman
(1984); Gilks et al. (1996). Obviously Gibbs sampling defines a Markov chain. The tran-
sition matrix is given by the products of the local transitions used for Gibbs sampling.
The following theorem is the foundation of Markov chains (Andrieux et al., 2003).

Theorem 4 A Markov chain converges to a stationary distribution π∗(x) if the chain has the
two properties

1. Irreducibility

2. Aperiodicity
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Irreducibility means that there is a positive probability of visiting all states. Gibbs sam-
pling fulfills the assumptions of the above theorem if p(x) > 0 for all x. Furthermore
Gibbs sampling is aperiodic.

We now come to the difficult part of the proof. We know that Gibbs sampling
converges to a stationary distribution, but not the structure of this distribution. This
problem is solved by the next theorem. We state the theorem in the notation of Geman
and Geman (1984).
Theorem 5 Let G be the neighborhood system defined by the factor graph of the ADF. Perform
Gibbs sampling using this neighborhood. Then X is a Markov random field with respect to G if
and only if the stationary distribution π∗(x) is the Gibbs distribution with respect to G.
In our application the Markov random field is defined by the factors and the corre-
sponding Gibbs distribution. Therefore the stationary distribution of Gibbs sampling
is this Gibbs distribution. 3

We can now define the Markov network algorithm (MN-GIBBS).
MN-GIBBS

• STEP 0: Compute the Markov network from the factor graph of the ADF.

• STEP 1: t ⇐ 0. Generate N points according to the uniform distribution with
β(0) = 0.

• STEP 2: With a given ∆β(t) > 0 do Boltzmann selection.

• STEP 3: Compute the conditional probabilities p(xi|MB(Xi) \ Xi) using the se-
lected points.

• STEP 4: Generate a new population N t according to Gibbs sampling.

• STEP 5: If termination criteria are met, STOP.

• STEP 6: Add the best point of the previous generation to the generated points
(elitist).

• STEP 6: Set t⇐ t+ 1. Goto STEP 2.

From theorems 2 and 5 follows the next theorem.
Theorem 6 For

∑
t ∆β(t) → ∞ and infinite populations the algorithm MN-GIBBS con-

verges to a distribution where only the global optima have a probability greater than zero.
The computational complexity for one iteration step of Gibbs sampling is bounded

by O(N) if the scope of the Markov blanket is bounded by a constant independent of
n. But convergence to the true distribution has been proven only for t → ∞. We will
give polynomial complexity bounds for certain functions later. For the general case
the bounds are exponential. Despite this fact Gibbs sampling is very popular in many
scientific disciplines.

Blocked Gibbs sampling converges faster than single variable update, but the con-
vergence might still be very slow. In particular samples with high probability p(x)
might be generated only after a large number of steps. This problem is addressed by
importance sampling. Efficient sampling of Markov networks is still an active research
area. There is a trade-off between computational effort and quality of the sample. A
recent survey of different variants of Gibbs sampling has been published by Guo and
Hsu (2002).
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Convergence of EDAs for Infinite and Finite Samples

2.2 Implementations of MN-Gibbs
An early implementation using a restricted class of Markov networks is reported in
Santana (2003). The algorithm called MN-EDAf in Santana (2005) is an implementation
of MN-GIBBS. The author is mainly interested in learning the Markov network from
data, so MN-EDAf is not thoroughly investigated. It is used for comparisons only. In
the paper also different variants of Gibbs sampling are numerically investigated. An
interesting variant is to start sampling not randomly, but at points with high fitness
values.

The algorithm IS-DEUM by Shakya (2006) is a substantial modified Markov net-
work algorithm. The author does not use the ADF for constructing the Markov net-
work, but computes a restricted model U of the fitness function from the factor equa-
tion − ln f(x) = U(x) using N samples. The author considers linear and quadratic U.
The coefficients can be obtained by solving a linear equation. Depending on the rela-
tionship between N and the number of coefficients M of the model, the system will be
under-, over-, or precisely-specified. For the solution of the equation Singular Value
Decomposition is used.

Let M be the number of coefficients of the model. Then the computational com-
plexity is O(M2N) if N < M and O(MN2) if N > M . Thus the computation of a
quadratic model is already very expensive. The model is computed only once. The
global optima of the function are computed by Gibbs sampling, where the temperature
T = 1/β is continously decreased till it is zero. The algorithm spends most of the com-
putation time within this modified Gibbs sampling. This is a strong indication that the
algorithm is more a simulated annealing algorithm (Kirkpatrick et al., 1983) than an
EDA.

A full MN-GIBBS implementation seems to be the algorithm MARLEDA+model

from Alden (2007). The full Markov network model is derived from the ADF. The
conditional probabilities are computed from the selected set of points. Then Gibbs
sampling is used to create a new population. The author does not investigate this algo-
rithm, because he concentrates on the difficult task of learning the Markov model from
data. MARLEDA+model is used for numerical comparisons only.

2.3 Regional graphs and energy minimization
Santana (2005) and Mühlenbein and Höns (2005) introduced regional graphs for EDAs.
Regional graphs are closely related to Markov random fields and the Gibbs distribu-
tion. A definition of regional graphs is outside the scope of this paper. Santana used
the Kikuchi factorization and computed its parameters in each generation from the se-
lected samples of high fitness. The new population is generated by Gibbs sampling.

Mühlenbein and Höns (2006) used the original idea of Kikuchi and computed the
parameters of the Kikuchi factorization by minimizing Gibbs energy using the sub-
functions of the ADF. This is done only once for a chosen β of the Gibbs distribution.
Sampling is done with Probabilistic Logic Sampling (PLS) using a simplified factorization.
PLS is explained in the next section.

3 A convergence theorem for the factorized distribution algorithm

The most popular graphical model used in EDAs is the Bayesian network (BN) (Pearl,
1988). A BN represents a factorized distribution in the following form

p̃(x) =

n∏

i=1

p(xi|pai), pai ⊆ {X1, X2, . . . , Xi−1} (10)
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where pai are called the parents of xi, X0 = ∅. 4

Note that any distribution can be written in the form of a Bayesian network because of

p(x) = p(x1)p(x2|x1) · · · p(xn|x1, . . . , xn−1) (11)

But this factorization uses conditional distributions of size O(n), thus sampling from
the distribution is exponential in n. Therefore we are looking for factorizations where
the size of the marginals is bounded independently of n.
In order to compute a BN of an ADF, we can use the following simple algorithm.

Definition 8 Given S1, . . . , Sm, we define the sets Di, Bi and Ci for i = 1, . . . ,m :

Di :=

i⋃

j=1

Sj , Bi := Si \Di−1, Ci := Si ∩Di−1 (12)

We require that (Bi 6= ∅, p(xBi |xCi) > 0 : i = 1, . . . ,m), Dm = {1, . . . , n} and set D0 = ∅.
In the theory of decomposable graphs, Di are called histories, Bi residuals and Ci separators
(Lauritzen, 1996). A FDA factorization of the ADF is defined by

p̃(x) =
∏m

i=1
p(xBi |xCi) (13)

The set {Bi, Ci} is a clique5. A necessary condition that the FDA factorization describes
a distribution is obviously that the given marginals and conditional distributions are
consistent.

Definition 9 A set of marginal distributions p(xBi ,xCi) is called consistent if the marginal
distributions fulfill the laws of probability, e.g.

∑

xBi ,xCi

p(xBi ,xCi) = 1 (14)

∑

xBi

p(xBi ,xCi) = p(xCi) (15)

Any FDA factorization can easily be transformed into a BN. We just give a simple
example

p̃(x) = p(x1, x2)p(x3, x4, x5|x1, x2)

= p(x1)p(x2|x1)p(x3|x1, x2)p(x4|x1, x,x3)p(x5|x1, x2, x3, x4)

A FDA factorization can easily be used for sampling. The simplest sampling
method is called probabilistic logic sampling (PLS) introduced by Henrion (1988). It works
as follows:

Probabilistic Logic Sampling

• STEP 1: For t = 1 to N ; For i = 1 to m

• STEP 2: Sample xtBi from p(xBi |xtCi)
4In machine learning a Bayesian network is a directed graph because the dependencies are causal inter-

preted. For EDA applications this restriction is not necessary, because only the factorization is needed. The
factorization defines an ordering of the network.

5A clique (Pearl, 1988) is a set of vertices V such that for every two vertices in V, there exists an edge
connecting it. This is equivalent to saying that the subgraph induced by V is a complete graph.
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Convergence of EDAs for Infinite and Finite Samples

In general, PLS does not generate the true distribution. This has been proven by
Höns (2006). The proof is lengthy and very technical. It is therefore omitted.

Proposition 1 Let a consistent set of marginal distributions p(xBi ,xCi) be given. Then using
PLS we have

p̃(xBi |xCi) = p(xBi |xCi), i = 1, . . .m (16)

whereas in general
p̃(xBi ,xCi) 6= p(xBi ,xCi), i = 1, . . .m (17)

The inequality (17) is often overlooked. It means that probabilistic logic sampling
does not reproduce the given marginals for general FDA factorizations, despite the
conditionals are reproduced. Thus PLS might not generate the true distribution. The class
of FDA factorizations has to be constrained further. This problem is investigated next.

3.1 Exact FDA Factorizations
The following theorem was proven by Mühlenbein et al. (1999) for the Boltzmann dis-
tribution.
Theorem 7 (Factorization Theorem) Let f(x) =

∑m
i=1 fsi(x) be an ADF. Compute a FDA

factorization. If

∀i ≥ 2 ∃j < i such that Ci ⊆ Sj (18)

then

pβ(x) =
∏m

i=1
pβ(xBi |xCi) =

∏m
i=1 pβ(xBi ,xCi)∏m
i=2 pβ(xCi)

(19)

Definition 10 The constraint defined by equation (18) is called the running intersection
property (RIP) (Lauritzen, 1996). The factorization is polynomially bounded (PBF) if the
size of the cliques {Bi, Ci} is bounded by a constant independent of n.

The theorem is not restricted to the Boltzmann distribution, but is valid for all applica-
tions involving the computation of a sum-product (Kschischang et al., 2001). Note that
exact factorizations are not unique. In fact we have
Corollary 1 Any FDA factorization which fulfills the RIP and contains the interaction graph
GADF as a subgraph generates the true distribution using PLS.
The corollary follows from the observation that we can join two or more sub-functions,
resulting in an ADF with larger sets S̃i. From a numerical point of view, the best factor-
izations would fulfill the conditions of the theorem and have the smallest cliques.

Let us discuss a simple example, the function defined in (8).

f(x) = f1(x1, x2) + f2(x2, x3) + f3(x3, x4) + f4(x4, x1)

p̃1(x) = p(x1, x2)p(x3|x2)p(x4|x3)

The factorization leaves out the dependency between X4 and X1. This problem can be
solved by joining sub-functions f3(x3, x4) and f4(x4, x1). This leads to the factorization

p̃2(x) = p(x1, x2)p(x3|x2)p(x4|x3, x1)

This factorization contains all edges of GADF but violates the RIP because X1 and X3

are not contained in a common clique. Sampling with PLS might not reproduce the
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distribution p. Therefore we join sub-functions f1 and f2. This gives a factorization
fulfilling the RIP

p̃3(x) = p(x1, x2)p(x3|x2, x1)p(x4|x3, x1)

Sampling p̃3(x) using PLS will generate the distribution p.
In order to obtain a factorization fulfilling the RIP all combinations of joining sub-

functions have to be tested. This is prohibitive for an arbitrary ADF. Actually, it turns
out that the computation of an exact factorization is done better by investigating the
corresponding interaction graph GADF . A well-known algorithm computes junction
trees (Jensen and Jensen, 1994). It obtains an exact factorization of reasonable clique
sizes and fulfilling the RIP, if possible. A short description of the algorithm can be
found in Mühlenbein and Höns (2005). The largest clique of the junction tree gives the
largest marginal of the factorization and determines the numerical complexity. Com-
puting the network with minimal largest clique size is NP-hard (Cooper, 1990).

The space complexity of exact FDA factorizations has been investigated by Gao
and Culberson (2005). For many interesting problems like functions defined on grids
of dimension two and higher exact factorizations have clique sizes of O(n), thus they
are not bounded polynomially. For these functions one has to use approximate factor-
izations. A good heuristic should minimize the size of the cliques but simultaneously
use all dependencies in GADF.

3.2 The Factorized Distribution Algorithm FDA
The FDA factorization is the heart of the factorized distribution algorithm.

FDA

• STEP 0: Set t⇐ 0. Generate N points randomly.

• STEP 1: Selection of points with high fitness.

• STEP 2: Compute the conditional probabilities ps(xtBi |xtCi) using the selected
points.

• STEP 3: Generate a new population according to p(xt+1) =
∏m
i=1 p

s(xtBi |xtCi)
• STEP 4: If termination criteria are met, STOP.

• STEP 5: Add the best point(s) of the previous generation to the generated points
(elitist).

• STEP 6: Set t⇐ t+ 1. Go to STEP 1.

In FDA we have not implemented a junction tree algorithm, but a very fast algo-
rithm called the sub-function merger algorithm. It works as follows. Each new variable
is included in a set together with the previous variables on which it depends. How-
ever, if another variable depends on a superset of variables, the two sets are merged.
After completing the merge phase, the algorithm calculates C̃j , B̃j and D̃j analogous
to the construction given by (12). This sub-function merger algorithm might compute
too large cliques. Therefore a cut parameter k is used which bounds the clique size. If
the clique size becomes larger than k our implementation will randomly leave out arcs
fromGADF . The interested reader is referred to Mühlenbein and Höns (2005). Thus the
FDA algorithm tries to cover all interactions of GADF, but does not care about the RIP.

The next theorem follows from the Factorization Theorem and the convergence
theorem of BEDA.
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Convergence of EDAs for Infinite and Finite Samples

Theorem 8 Run FDA with Boltzmann selection. If the FDA factorization covers all dependen-
cies of the network GADF and fulfills the RIP, then FDA with PLS will converge to the optima.
We will later prove that the theorem remains true if a polynomially bounded sample
size N is used. In Mahnig and Mühlenbein (2001) an adaptive annealing schedule SDS
for Boltzmann selection has been derived and analyzed theoretically. Convergence to
the global optima for FDA with other selection methods has been proven by Zhang
(2004); Zhang and Mühlenbein (2004).

Note that the theorem gives sufficient conditions for convergence to the optima.
The conditions are not necessary for convergence. We only need to use a factorization
where the probabilities of the global optima are high and sampling generates points of
high probability frequently. We explain the problem with a simple example.

Example 2:

f(x) =
n∑

i=1

xi +
n∏

i=1

xi (20)

The exact factorization is the joint distribution p(x1, . . . , xn). The FDA factorization for
f(x) =

∑n
i=1 xi is

p(x) =

n∏

i=1

p(xi) (21)

FDA will easily find the optimum using this factorization, because
∑
xi and

∏
xi have

the same optimum. The factorization is also a good approximation of the true distribu-
tion, because

∏
xi = 0 for x 6= (1, . . . , 1). Thus instead of using the exact distribution,

it is possible to use a simpler distribution which has the same global optima as the original
distribution.
Now we change the function.

f(x) =

n∑

i=1

(1− xi) + (n+ 1) ·
n∏

i=1

xi (22)

The exact factorization is again the joint distribution. But now the optimum of the
sum is x = (0, . . . , 0), the optimum of the product is x = (1, . . . , 1) which is the global
optimum with a function value of n+ 1. The factorization (21) is again a good approxi-
mation of the exact distribution because the product contributes to the fitness function
only at x = (1, . . . , 1). But using this factorization, any kind of selection will drive p(xi)
to 0. Thus FDA will converge to the second best maximum.The next function is

f(x) =
3m−2∑

i=1,4,...

xi ∗ xi+1 ∗ xi+2 (23)

The exact factorization is

p(x) =

3m−2∏

i=1,4,...

p(xi, xi+1, xi+2) (24)

Here the simple factorization (21) is a bad approximation of the exact factorization,
but EDA algorithms using this factorization will easily find the optimum. Selection will
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increase the number of strings with a large number of 1’s. Therefore p(xi) will converge
to 1, ultimately generating the global optimum.

FDA has experimentally proven to be very successful on a number of functions
where standard genetic algorithms fail to find the global optimum. For recent surveys
and a more detailed description of the algorithm, the reader is referred to Mühlenbein
and Mahnig (2002a, 2003); Mühlenbein and Höns (2005, 2006).
Next we shortly describe algorithms which learn the structure of the network from
data.

4 Learning a Factorization from Data

If the explicit mathematical definition of the function is not known, its structure has to
be learned from the data. For detecting dependencies different measures can be used,
like Pearson’s χ2 test, the conditional entropy or the maximum likelihood (Mühlenbein
and Höns, 2006).

4.1 Learning a Bayesian network
We consider the class of Bayesian networks defined in equation (10). The conditional
entropy between two variables is defined as

H(X,Y ) = −
∑

x,y

p(x, y) log p(x|y) (25)

Let B denote a Bayesian network, D the given data set and N = |D| its size. Then the
conditional entropy H(B,D) of the network structure B and data D is given by

H(B,D) = −
n∑

i=1

∑

pai

∑

xi

m(xi,pai)

N
log

m(xi,pai)

m(pai)
(26)

Here m(xi,pai) denotes the number of occurrences of xi given configuration pai.
m(pai) =

∑
xi
m(xi,pai). If pai = ∅, then m(xi, ∅) is set to the number of occurrences

of xi in D.
In order to find a good network structure with small cliques, just minimizing the

conditional entropy is not enough. Networks with a larger set of parameters obviously
fit the distribution better. In order to give more weight to sparse Bayesian networks, a
weight factor α is used which penalizes the size of the network. To score the networks we
use the Bayesian Information Criterion proposed by Schwarz (1978)

BIC(α) = −N ·H(B,D)− αPA · log(N) (27)

PA is the total number of probabilities to compute. The term PA · log(N) models the
computational cost of computing the probabilities. Note that −H(B,D) is multiplied
by the number of samples. The larger the sample size, the more weight is given to
fitting the empirical distribution. Under certain assumptions, Schwarz computed α =
0.5 as the optimal weight. A more detailed derivation of BIC using the maximum
entropy principle and the log-likelihood principle can be found in (Mühlenbein and
Höns, 2006).

To compute a network B∗ which maximizes BIC requires a search in the space of
all BNs with bounded number of parents. It has been proven that the computation of
the best BN is NP-hard (Cooper, 1990; Chickering et al., 2004).

12 Evolutionary Computation Volume x, Number x



Convergence of EDAs for Infinite and Finite Samples

We use the following greedy algorithm instead. This simple learning method has
been first proposed by Heckerman et al. (1995). It starts with an arc-less network. At
each step it adds the edge which gives the maximum increase of BIC(α). kmax is the
maximum number of incoming edges allowed.

BN(α,kmax)

• STEP 0: Start with an arc-less network.

• STEP 1: Add the arc (xi, xj) which gives the maximum increase of BIC(α) if |paj | ≤
kmax and adding the arc does not introduce a cycle.

• STEP 2: Stop if no arc is found.

Checking whether an arc would introduce a cycle can easily be done by maintain-
ing for each node a list of parents and ancestors, i.e. parents of parents etc. (xi → xj)
introduces a cycle if xj is ancestor of xi. Because of the additivity of BIC only the term
has to be recomputed where the edge is added. Thus the computational complexity of
the learning algorithm is bounded by O(Nn2).

Our algorithm LFDA uses the above learning method. LFDA is very similar to
FDA. The only difference is that in STEP 2 of FDA the Bayesian network is computed
anew from the set of selected points. As selection converges to a small set of points with
good fitness, the learned networks get more and more sparse. If selection converges to
a single point, the network will be arc-less.

This learning method is also used by the Bayesian Optimization Algorithm BOA
from Pelikan and Goldberg (2000, 2002). A different variant of Bayesian learning is
implemented in the Estimation of Bayesian Networks algorithm (EBNA) (Etxeberria
and Larrañaga, 1999). A general overview of learning graphical models can be found
in the book edited by Jordan (1999). A recent numerical evaluation of the efficiency of
popular learning algorithms has been done by Tsamardinos et al. (2006).

4.2 Learning of Markov networks and factor graphs

Learning of factor graphs is easier than learning of Bayesian networks because they
match the ADF structure. Abbeel et al. (2006) present a polynomial learning algorithm.
Like LFDA it uses the conditional entropy to find the best network in a restricted class
of bounded Markov networks.

Theorem 9 (Computational complexity of learning Abbeel et al. (2006) Theorem 14)
Let γ > 0 be the minimum of the conditionals p(Xi|X \ Xi) be independent of n. Let k be
the maximum number of variables per factor; let b be the maximum number of variables per
Markov blanket. Then the running time rt of the learning algorithm is

rt ∈ O
(
Nkb(k + b)nk+b

)
(28)

The learning algorithm tests all combinations of sets of variables and correspond-
ing Markov blankets. Therefore we have an exponential dependence on the maximum
scope size k and the maximum Markov blanket size b, the dominating term is nk+b.
For a large number of variables and k ≥ 3 this learning algorithm is computational
too expensive. The polynomial bound can be made smaller by implementing a more
sophisticated learning algorithm. To my knowledge the learning algorithm has not yet
been implemented.
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A much simpler learning algorithm is used in MARLEDA (Alden, 2007). It uses
Pearson’s χ2 test to compute the confidence level of the dependencies between vari-
ables. Using the dependencies a Markov network is constructed. The construction
procedure is very simple, so it does not guarantee that the correct factor graph is ob-
tained.

MN-EDA of Santana (2005) also uses the χ2 test to detect dependent variables. It
creates not a full Markov network, but Kikuchi approximations. The main computa-
tional cost of learning arises in performing the independence tests. It is upper bounded
by O(Nn3).

5 Convergence of EDAs with Finite Samples

The convergence theorems presented so far are valid for infinite populations only. We
now investigate convergence for finite populations. EDAs are probabilistic algorithms.
For finite populations convergence to the global optima can only be probabilistic. In
this section we will use the (ε, δ) convergence concept first applied in Probably Approxi-
mately Correct (PAC) learning (Kearns and Vazirani, 1994). It is defined as follows:
Definition 11 Let ε > 0, δ > 0. Let p be the true distribution, p̃ an approximation. Then we
speak of (ε, δ) convergence if

prob (error(p, p̃) ≤ ε) ≥ 1− δ (29)

error denotes any distance measure.
To get a feeling for sample complexity bounds, consider the following problem:

suppose we have a coin whose heads probability p we wish to determine. Letting 0
denote tails and 1 denote heads we obtain a sampleDN = {x1, . . . , xN}. The maximum
likelihood approximation gives p̂ = 1/N

∑
i x

i. The question then arises: how large
must N be for |p̂ − p| < ε with probability at least 1 − δ. An application of Chernoff-
type bounds (Kearns and Vazirani, 1994) shows thatN = 1

2ε2 ln
2
δ will suffice. This upper

bound is distribution free and makes no assumption about the value of p.
In this case a lower bound can also be obtained. We set p = 0.5. By bounding

the relevant binomial coefficients, we obtain inequalities for the probability that the
estimate is more than ε away from p. One obtains N ≥ 1

5ε2 ln
2
δ . Thus in this simple

example the upper and lower bound differ only by a small multiplicative constant.

5.1 Sample complexity for FDA
Let a Bayesian network be given. Let DN = {x1, . . . ,xN} be the empirical sample
where xi = (xi1, . . . , x

i
n). It is easy to show that the maximum likelihood approximation

of the true probabilities are the long-run frequencies of the sample. The error between
two distributions is often measured by the Kullback-Leibler divergence.
Definition 12 The Kullback-Leibler (KLD) divergence between two distributions is defined by

D(p||q) =
∑

x

p(x) ln
p(x)

q(x)
(30)

Note that the divergence is not symmetric!
There exist a number of papers deriving bounds on the sample size for PAC con-

vergence. These bounds are valid for the approximation of a single distribution (Das-
gupta, 1997). But in EDAs a new distribution is computed at each generation. This
complicates the application of PAC learning considerably. The next theorem gives our
main result. Let |p− p̂|1 =

∑
x |p(x)− p̂(x)|.
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Theorem 10 Let f be an ADF function with m sub-functions of at most k binary variables. Let
the FDA factorization

p(x) =

m∏

j=1

p(xbj |xcj )

fulfill the RIP. Run FDA with Boltzmann selection and PLS. Let pg(x) be the true Boltzmann
distribution at generation g with Boltzmann factor βg =

∑g
i=1 ∆βi, p̂g(x) be the empirical

distribution. Let N � 2n. Let Boltzmann selection select at least N/4 different points in each
generation. Let any 0 < ε < 1, 0 < δ < 1 be given. Then in order that

|pg − p̂g |21 ≤ gε (31)

to hold with probability at least 1− δ it suffices that the sample size N fulfills

N ≥ 8 ln 2

ε
m
(

2k ln 2 + ln
mg

δ

)
(32)

The proof can be found in the appendix.
The assumption that Boltzmann selection selects at least N/4 different points is

fulfilled almost surely as long as pg(xopt) ≤ 1/N 6 and selection is not too strong. FDA
checks if this condition is fulfilled. If not, it increases the sample size or stops the
algorithm after two generations.
Next we eliminate the dependency on the number of generations g. Thierens and Gold-
berg (1994) have proven that for truncation selection the number of generations until
the population is fixed is bounded by n. Mahnig and Mühlenbein (2001) have shown
that the Boltzmann selection scheme SDS is asymptotical equal to truncation selection.
Therefore the bound can be used for SDS also. To be on the save side we set g = 2n.
Setting ε′ = ε/(2n) in theorem 10 we obtain the corollary.

Corollary 2 Let the assumptions of theorem 10 be fulfilled. Let any 0 < ε < 1, 0 < δ < 1 be
given. Let g = 2n. Then for

|pg(xopt)− p̂g(xopt)|2 ≤ ε (33)

to hold with probability 1− δ it suffices that N fulfills

N ≥ 16 ln 2

ε
nm(2k ln 2 + ln

2nm

δ
) (34)

For convergence to the optima pg(xopt) has to be larger than 1/N . This can always be
achieved because pg(x) is a Boltzmann distribution. We shortly discuss this problem.
We will require that pβ(xopt) = e−1.

Example 3: f1(x) =
∑n
i=1 xi

We easily compute

pβ(xopt) =
enβ

(1 + eβ)n
=

1

(1 + e−β)n
(35)

We set β = lnn and obtain

pβ(xopt)→ e−1 n→∞
6If pg(xopt) > 1/N then the optimum will be found with high probability in this or the next generation.
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We now change the scaling of the function: f2(x) = 1
n

∑n
i=1 xi

Here the difference between the optimum and the second best value is 1/n. One com-
putes

pβ(xopt) =
1

(1 + e−β/n)n
(36)

If we set β = n lnn we obtain as before pβ(xopt)→ e−1.

Table 1 shows the numerical results.

f1 n βtheo p̂(x(opt) βFDA g
f1 50 3.9 0.32 3.7 12
f2 50 195 0.29 190 12
f1 100 4.6 0.28 4.6 19
f2 100 460 0.35 430 18
f1 200 5.3 0.27 5.1 28
f2 200 1059 0.31 1010 28
f1 400 6.0 0.35 5.9 42
f2 400 2396 0.32 2360 43

Table 1: Comparison of theoretical β and β obtained by FDA. (t) denotes truncation
selection

For both functions the Boltzmann selection schedule SDS reaches the theoretical β
in almost the same number of generations, despite the large difference of the values.
Boltzmann selection is invariant to a scaling of the function. In both cases the number
of generations to reach the required value of β scales like O(

√
n). This has been proven

for this class of functions by Mühlenbein and Schlierkamp-Voosen (1993).

Summary: We have proven convergence to the optima in polynomial time for FDA
using PLS if the network fulfills the running intersection property. Numerical exper-
iments indicate that he sample size bound of N ∈ O(nm lnnm) is too large. It arose
because we had to estimate g successive generations of distributions. But the strongest
assumption is the RIP. This assumption is necessary because otherwise the optima of
the empirical distribution might not be the optima of the Boltzmann distribution.

5.2 Computational complexity of EDAs using Markov networks

A recent complexity analysis for Markov networks has been done by Abbeel et al.
(2006). They assume that an unknown process has produced the samples according
to the unknown Markov random field. Then the sample complexity is polynomially
bounded if the scope of the Markov blankets are bounded independently of n.

But EDAs have to sample the Markov random field. Here often Gibbs sampling
is used. Gibbs sampling is an iterative process, the number of steps needed for con-
vergence is unknown in general. For special functions in statistical physics and im-
age restauration the computational complexity of Gibbs sampling has been intensively
studied. The following results have been reported by Gibbs (2000).

Let a Markov chain with probability transition matrix P and stationary distribution
pi be given. Let x0 be the initial configuration.
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Definition 13 The total variation distance at step t is

Dx0(t) =
1

2

∑

x

|P t(x0,x)− π(x)| (37)

The convergence time of the Markov chain used by the Gibbs sampler is defined as

τ(ε) = max
x0

min{t : Dx0(t) ≤ ε t′ ≥ t} (38)

P t(x0,x) denotes the probability that the Markov chain with initial state x0 is in state
x at iteration t.
For the ferromagnetic Ising model

H(s) = −
∑

i,j

sisj − h
∑

i

si

pβ(s) = eβH(s)

Gibbs (2000) summarizes the results7. The convergence rate for one-dimensional prob-
lems is (O(n ln(n)) where n denotes the number of points. In dimensions higher than
one, this result holds for h = 0 for all values below a critical value at which a phase
transition occurs8. For the Ising model with an external field (h > 0) the convergence
rate can be shown to beO(n ln(n)) for all β in two dimensions and for small β in higher
dimensions.

The disappointing result for h = 0 can easily be explained. This problem has two
optima, s+ = (+1,+1, . . . ,+1) and s− = (−1,−1, . . . ,−1). If β gets large, Gibbs sam-
pling needs a long time to traverse between s+ and s−. But in general the complexity
results are encouraging. Frigessi et al. (1997) conjecture that Gibbs sampling from a
Markov random field that does not undergo a phase transition has polynomial com-
plexity.

5.3 Sample complexity for learning the ADF structure by probing
A learning method not based on statistical independence tests has been investigated
by Heckendorn and Wright (2004). Earlier work has been reported by Munetomo and
Goldberg (1999). The method computes the structure of the function by computing its
Walsh coefficients.
Theorem 11 (Heckendorn and Wright (2004)) Assume a class of ADF functions where
each sub-function has at most k variables. Let δ > 0 be a constant. Then the number of func-
tion evaluations required by the DETECT-LINKAGE learning algorithm of order 2 to detect the
scope of all sub-functions with probability at least 1− δ is bounded by

N ∈ O
(

2kn2 lnn ln(1− δ 1
2 )
)

(39)

Wright and Pulavarty (2005) propose to use FDA to compute a factorization of the ADF.
If the ADF structure is too complex the algorithm MN-GIBBS should be used instead.
For separable ADFs a smaller bound can be shown Streeter (2003). For separable func-
tions an upper bound of N ∈ O(m lnm) where n = m ∗ k has been reported for the
extended compact genetic algorithm ECGA by Harik et al. (2006). But their error mea-
sure is weaker. It is assumed that the probability of a sub-function being not correct is
δ = 1/m.

7In physics one minimizes H.
8For two dimensional problems we have βc ≈ 0.44.
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6 The Connection between FDA and LFDA

Learning can have an advantage compared to a fixed FDA factorization. It can use
the actual data to find a good model. But what is a good model for EDAs ? We have
shown in the previous sections that for provable convergence a model should match the
structure ofGADF . Can learning methods detect this structure in principle? The answer
is yes. The reason is the following conjecture (Mühlenbein and Höns, 2005). In order
to state the conjecture Shannon’s mutual information I(X,Y ) is needed (Pearl, 1988). It
is a nonnegative quantity and is equal to 0 iff X and Y are mutually independent. It is
closely related to the conditional entropy.

I(X ;Y ) = H(X |Y )−H(X) (40)

Conjecture: Let the empirical distribution p̂(x) be generated by selection from an ADF . Then
for large sample sizes N created by selection the mutual information is the largest between
those variables which are contained in a common sub-function. Therefore it is possible to detect
the interaction graph GADF from data.

We have numerically investigated the conjecture and found no violation so far.
Thus detecting the dependencies is not the problem of learning, but to compute a
good Bayesian network given this information. Computing the best BN is NP-hard.
Therefore most learning algorithms use a simple greedy search. Thus the quality of
the learned BNs depends mainly on the learning algorithm. We will test the LFDA
learning algorithm numerically using four test functions of increasing complexity.

F1: The trap function fTrap(k,m)

Let k ≥ 3, let m be the number of sub-functions.

fTrap(k,m) =
∑

j=0,k,...,k·(m−1)

ftrap(k)(xj , xj+1, . . . , xj+k−1) (41)

fTrap(k,m) is a separable function and therefore easy to optimize. ftrap(k) is a deceptive
function (Deb and Goldberg, 1993). ftrap(3) is shown in table 2.

F2: The function fIso(n)

Let n ≥ 4 be even, let m = n/2 be the number of sub-functions.

fIso(n) =
∑

j=0,2,...,n−4

f1(xj , xj+1, xj+2) + f2(xn−2, xn−1, xn) (42)

The functions f1 and f2 are defined in table 2. f1 has the maximum at x = (0, 0, 0),
whereas f2 has the maximum at x = (1, 1, 1). The global optimum is x = (1, 1, . . . , 1)
with a function value of m2 − m + 1. It is very isolated. The second optimum has a
value of m2 −m and is at x = (0, 0, . . . , 0). Its attractor region is much larger, therefore
the function is very difficult to optimize.

F3: The 2D grid Ising spin glass

fIsing = −
∑

i,j

Ji,jsi · sj −
∑

i

hisi (43)

j are the four neighbors of i in the 2D grid. The couplings Ji,j are randomly drawn
from a Gaussian distribution. h is the external magnetic field. The spins si have values
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u 0 1 2 3
ftrap(3) 2 1 0 3
f1 m 0 0 m-1
f2 0 0 0 m

Table 2: Definition of the sub-functions of ftrap(3) and fIso(n); m denotes the number of
sub-functions, and u the number of bits on.

in {−1, 1}. We will use hi = 0, ∀i. This function is symmetric, therefore it has two
global optima, which are the binary complement from each other.

F4: Kauffman’s n : k function.
Here we have n sub-functions, each with k variables. For each variable k − 1 variables
are randomly chosen, defining the scope Si of sub-function fi. The function values of
fi are uniformly distributed in [0, 1]

Kn;k =

n∑

i=1

fi(xSi) (44)

The interconnection structures of the four functions are representative for a large
class of functions. fTrap is a separable function. fIso is defined on the real axis with
an overlap of one variable, the Ising model is defined on a 2D grid, and Kauffman’s
function has a random interconnection structure.

The optimization of Kn;3 is NP-hard (Wright et al., 2000). The computational com-
plexity of the Ising spin glass model depends on the structure and is discussed in the
appendix.

6.1 Investigation of the learned Bayesian networks
The SDS selection method does not work efficiently with LFDA. The selection is too
weak the first generations, important dependencies are not detected. Therefore we use
LFDA with truncation selection with standard parameter τ = 0.3. BOA uses tourna-
ment selection with 50% replacement. Both algorithms compute the network anew
in each generation. Table 3 shows numerical results for problem sizes of n = 49 or
n = 50. We want to show a tendency, therefore the table just summarizes a single net-
work, usually taken after the first four generations. The learning algorithms does not
penalize RIP violations, so there are lots of RIP violations.

Table 3 shows the results for two penalty factors α, namely the standard setting
α = 0.5 and α = 0.1. BOA is run with the standard setting. The factorizations com-
puted with α = 0.5 and α = 0.1 are very different. We show a typical part of both
factorizations for fTrap using a population of N = 4000. The number of parents is
restricted to k = 4. The learning algorithm computed

p(x) = p(x5)p(x7|x5)p(x6|x5, x7, x8)p(x8|x5, x7, x9) · · · α = 0.5

p(x) = p(x0|x2, x3, x35, x45)p(x1|p(x0, x2, x3, x44) · · · α = 0.1

The standard penalty factor α = 0.5 gives a sparse network, where 80 edges of a total of
87 are correct. In contrast, the small weight α = 0.1 gives a dense network where each
variable has the maximum number of allowed parents, namely 4. The total number of
edges is 182.
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problem N α k (c/t/m) edges RIP viol. best
fTrap(5,10) 1000 0.5 4 20/45/80 7 no

4000 0.5 4 80/87/20 0 yes
2500 0.1 4 93/182/7 40 yes

(BOA) 3000 4 94/190/6 44 yes
4000 0.1 2 70/95/30 17 yes

FIso(48) 1000 0.1 2 54/92/18 29 no
(BOA) 1500 2 52/95/20 ? yes

3000 0.5 2 63/78/9 6 yes
2000 0.1 2 60/94/12 24 yes

Ising 500 0.5 4 32/59/52 7 yes
500 0.1 4 15/167/69 43 no

4000 0.5 4 56/73/28 16 yes
4000 0.1 4 61/174/23 45 yes

K50;3 1000 0.5 4 43/63/75 16 no
1000 0.1 4 57/179/61 44 yes

10000 0.5 4 88/95/30 23 yes
10000 0.1 4 100/177/18 77 yes

Table 3: Typical LFDA network: α structure penalty, k number of parents,
graph:(correct(c)/total(t)/missed(m) edges), RIP violations, best: optimum found;

For fTrap about 80% − 90% of the edges have to be correctly identified to find
the optimum. Shown is also a run with only 2 allowed parents per variable. With
α = 0.1 the optimum is found with high probability. This means that the high order
dependencies are not necessary for finding the optimum of this function. The results
for fIso are similar. If the population size is increased toN = 3000 samples, the number
of missed edges is reduced to 9.

For the 7 · 7 Ising problem, LFDA finds the optimum with a population size of 500.
Only 32 edges of the Bayesian network are contained in GADF , 52 edges are missing.
Here the run with α = 0.1 does not find the optimum. A larger population size reduces
the number of missed edges. With a population size of 4000 the learning algorithm
computes a network with 70% correct edges. For Kauffman’s function the run with
α = 0.1 finds the optimum with N = 1000, but the standard setting fails. Only 50% of
the edges are contained in GADF . Even for N = 10000 and α = 0.1 there are 18 missed
edges. Here the limitations of the learning algorithm show up.

The results of BOA are comparable to running LFDA with α = 0.1 (see the analysis
by Lima et al. (2007); Yu (2006)). Recently an investigation of the networks computed
by the successor program hBOA appeared in Hauschild et al. (2007). hBOA generates
sparser networks than BOA. The results of hBOA are more similar to using LFDA with
α = 0.5.

Summary: Increasing the sample size reduces the number of missed edges (edges con-
tained in GADF but not in the Bayesian network). LFDA might converge to the global
optima with small sample sizes using Bayesian networks with a large number of missed
edges. But this behavior depends on the problem to be optimized.
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7 Numerical results

The computation time of learning in LFDA is bounded by O(N ∗ n3). The implemen-
tation is not optimized because many different algorithms are implemented using the
same data structures. Therefore the computation time gets very large for large prob-
lems9. For BOA the computational complexity of learning the Bayesian network is
O(N ∗ n2). Therefore we use BOA for larger problems.

For comparison with other papers we compute the probability of finding the op-
timum, mathematically prob(finding the optimum) > 1 − δ10. This criterion is the in-
teresting one for optimization. The bound on the sample size N ∗ is estimated by com-
puting the smallest sample size where the probability for finding the optimum is at
least 1− δ. For small problems 1000 runs have been made, 100 runs for problems with
n > 200.

problem n N∗ gen. FE δ
fTrap(5,n/5) 30 1800 4.3 9500 0.04

60 4800 7.6 40200 0.03
120 10000 11.9 118000 0.04

(*) 180 17000 17.4 300000 0.00
BOA 120 6000 24 78000 0.01

BOA(*) 240 14000 34 252000 0.00
BOA(*) 480 34000 49 884000 0.00
fIso(n) 31 1000 4.1 4100 0.06

59 2500 7.1 19400 0.05
121 5000 11.4 62800 0.09

BOA 121 7500 20.0 82500 0.00
BOA 201 15000 28.0 240000 0.00

BOA(*) 401 120000 53 3300000 0.00

Table 4: Numerically determined sample size bound N ∗, truncation selection τ = 0.3,
for LFDA α = 0.5, statistics from 100 runs, (*) single runs

For the function fTrap both LFDA and BOA converge to the optimum. The sample
size is bounded by O(n ln n). The scaling was tested for BOA till n = 480. For the
function fIso we expect difficulties. This is indeed the case. Till n = 201 the sample
size scales again like O(n ln n). But for n = 401 BOA did not find the global optimum
for N = 90000. It succeeded with N = 120000. Thus we have a eight times larger
sample size if the problem size is doubled (from n = 201 to n = 401). This shows that
it is dangerous to extrapolate from small problem sizes to large ones. Nevertheless it is
impressive that BOA finds the global optimum for n = 401 at all.

The numerical results for MARLEDA are disappointing compared to LFDA and
BOA. For the function fTrap(5,60) with 300 variables MARLEDA did not find the global
optimum, but instead computed optima nearby the trap optimum (Alden, 2007). The
problem is obviously the implemented learning algorithm.

In table 5 the results of FDA are presented. We have shown that for functions
fulfilling the assumptions of the factorization theorem with bounded clique size k a

9For large bi-partitioning problems LFDA has been optimized and runs in O(N ∗ n) time using sophis-
ticated hashing techniques and restricting the possible edges to edges which are contained in the graph
(Mühlenbein and Mahnig, 2002a).

10According to PAC convergence the criterion should be changed to prob(|xapp − xopt| < ε) > 1− δ
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sample size scaling with at most O(nm ln nm) is sufficient to obtain convergence to the
global optima.

problem n N∗ gen. FE δ
fTrap(5,n/5) 50 375 9.9 3700 0.05

100 500 16.1 8070 0.04
200 800 25.3 20200 0.03
400 1200 38.2 45800 0.04

(t) 200 800 16.3 13000 0.05
(t) 300 1300 18.4 23920 0.00

M+ 300 1400 15.0 21000 0.00
fIso(n) 49 440 10.1 4440 0.07

99 940 16.1 15100 0.07
201 1900 24.9 47400 0.07
401 3800 36.2 138000 0.05

(t) 201 90000 12.8 1350000 0.60

Table 5: Numerically determined sample size bound N ∗; (t) denotes truncation selec-
tion. M+ is MARLEDA+model (Alden, 2007).

The sample size scales less than linear for the decomposable function fTrap. The
number of function evaluations scales about O(m lnm) where m is the number of sub-
functions. This seems to be the best possible scaling for a random heuristic (Streeter,
2003).

For the function fIso the sample size scales about O(n). For this function the SDS
selection method is essential. Truncation selection for n = 201 needs a population size
of N = 90000 compared to N = 1900 with SDS! For all other problems truncation
selection is numerically more efficient (see also the discussion of the importance of
selection in Hauschild et al. (2007)). In any case, the numerical determined sample size
is N ∈ O(n) at most.

Results are also shown for MARLEDA+model. The author did not compute N∗.
Reported is only the result for fTrap(5,60). The numerical results are almost identical
to the results of FDA using truncation selection. This is to be expected, because both
algorithms use an exact model.

In table 6 we present results of the Ising spin glass. For this problem our con-
vergence results can not applied. For each problem size we investigated 10 randomly
generated problems. The FDA factorization uses cliques of size 5 (Mühlenbein and
Höns, 2006). This factorization covers all interactions, but violates the RIP. LFDA com-
putes Bayesian networks with at most 4 parents. The table shows the results of two
instances giving the best (1) and the worst results (2). We also report the average of
the best solution found. For n = 100 there is no difference in the performance between
the different problems. For n = 225 we generated a problem instance (2) where FDA
always converged to a local optimum. The value of the local optimum differs from the
global optimum at the fifth decimal place. Increasing the pop-size from N = 4000 to
N = 70000 did not improve the results. Interestingly LFDA found the optimum in 3
out of 10 runs. For n = 400 the runtime for LFDA gets large. Here only the results for
the problem giving the worst result with FDA is shown.

We have included a result from MARLEDA, despite it is a single run for a Ising
model restricted to integer couplings (Jij ∈ {−1,+1}). Because the result is so good, we
hope to convince the researchers to do more experiments. Santana (2005) also reports
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n Alg. P r. N gen. δ average best
100 FDA 1 1000 13.5 0.2 73.890 73.977(*)
100 LFDA 1 1500 14.1 0.1 73.947 73.977(*)
100 FDA 2 3500 14.5 0.2 73.342 73.359(*)
100 LFDA 2 3000 13.1 0.1 73.353 73.359(*)
225 FDA 1 3000 24.5 0.2 168.494 168.540(*)
225 LFDA 1 3000 25.0 1.0 167.449 167.757
225 FDA 2 4000 23.5 1.0 164.441 164.441
225 FDA 2 70000 22.5 1.0 164.441 164.441
225 LFDA 2 4000 25.5 0.7 164.304 164.473(*)
400 FDA 1 5000 33.1 0.8 298.874 300.504(*)
400 LFDA 1 5000 35.9 0.9 297.872 300.504(*)
400 M+ 2 900 20.0 - - (*)

Table 6: Best(1) and worst results(2) out of 10 randomly generated spin glass problems;
(*) global optimum; M+ is MARLEDA+model; results from (Alden, 2007)

results for his MN-GIBBS implementation MN-EDAf for very small Ising problems
(up to n = 64). He observes that MN-EDAf is by far the best algorithm among the
algorithm he compared.

For BOA and hBOA the scaling of the sample size and the number of function
evaluations has been intensively investigated by Pelikan and his coworkers (Pelikan
and Goldberg, 2006; Pelikan and Hartmann, 2006; Hauschild et al., 2007). But even
in very good experimental work sometimes unjustified conclusions are made. We just
cite: “hBOA is able to solve 2D Ising spin glasses in polynomial time”(p. 257 Hauschild
et al. (2007)). The statement should be more precise: hBOA is able to solve all problems
tested in polynomial time. Later we read (p.259): “While for 2D Ising spin glasses it is
unclear what is an ideal probabilistic model, the probability models are shown to cor-
respond closely to the structure of the underlying problem.” The empirical observation
supports our result. We have shown in this paper that for provable convergence the
ideal probabilistic model corresponds to the structure of the ADF.

8 Conclusion and Outlook

The family of EDAs are well founded in statistical learning theory. Using known results
from Bayesian networks and Markov networks we have been able to bound the sample
size needed for PAC convergence to the global optima. The numerical experiments
confirm the theoretical results.

Numerically the best results are obtained by using EDAs which use optimal net-
works derived from the ADF. Especially efficient is here the algorithm FDA using the
sampling method PLS with an exact factorization fulfilling the RIP. For complex prob-
lems the algorithm MN-GIBBS using Markov networks seems most promising. The nu-
merical efficiency of MN-GIBBS can be substantially increased if state-of-the-art Gibbs
samplers are used. Here lots of experiments are needed.

The results of algorithms learning Bayesian networks from data are astonishingly
good. But they cannot match the performance of algorithms using optimal networks.
They have problems with artificial functions like fIso For this class of functions the
learned network has to contain a substantial fraction of the edges of the interaction
graph GADF . But for many practical problems the number of correct edges can be
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small in order to find the optimum.
A promising new development are programs which compute the structure of the

fitness function from data by probing. A good candidate is the algorithm of Wright and
Pulavarty (2005). The computational complexity of the learning algorithm is bounded
by Ω(n2 lnn). This is the lowest bound reported for an algorithm computing the correct
structure of the fitness function. This learning algorithm can be used as a preprocessing
step for FDA or MN-GIBBS. An EDA implementation is urgently needed.

All EDA algorithms can run with local hill climbing algorithms. This is very suc-
cessful in combinatorial optimization using genetic algorithms (Mühlenbein, 1991). For
EDAs the importance of local hill climbing was demonstrated by Mühlenbein and Mah-
nig (2002a); Pelikan and Hartmann (2006). Convergence theorems for this class of algo-
rithms are currently under investigation.

The interested reader can download our free EDA software by contacting me.

A Proof of theorem 10

The proof is based on three lemmas. The first lemma is a fundamental theorem of PAC
learning (Kearns and Vazirani (1994)).

Lemma 1 Let p be a distribution over {0, 1}k. Let {xi}Ni=1 be i.i.d. samples from p, let p̂ be the
empirical distribution. Let any 0 < ε < 1,0 < δ < 1 be given. Then for

D(p||p̂) ≤ ε

to hold with probability 1− δ it suffices that

N ≥ 1

ε
(ln |H |+ ln

1

δ
) (45)

where |H | = 22k is the size of the hypothesis space.

Lemma 2 Let any 0 < ε < 1, 0 < δ < 1 be given. Let

p(x) =

m∏

j=1

p(xbj |xcj )

fulfill the RIP. Let k = maxj val(Xbj , Xcj ). Let {xi}Ni=1 be samples generated from p. Compute
p̂(xbj |xcj using the samples. Let

p̂(x) =

m∏

j=1

p̂(xbj |xcj )

Then for
D(p||p̂) ≤ ε

to hold with probability 1− δ it suffices that

N ≥ m

ε

(
2k ln 2 + ln

m

δ

)
(46)
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Proof: We have

D(p||p̂) =
∑

x

m∏

j=1

p(xbj |xcj )




m∑

j=1

ln p(xbj |xcj )−
m∑

j=1

ln p̂(xbj |xcj )




=
m∑

j=1

∑

xbj ,xcj

p(xbj ,xcj )
(
ln p(xbj ,xcj )− ln p̂(xbj ,xcj )

)

−
m∑

j=1

∑

xcj

p(xcj )
(
ln p(xcj )− ln p̂(xcj )

)

=
m∑

j=1

D
(
p(Xbj , Xcj )||p̂(Xbj , Xcj )

)
−

m∑

j=1

D(p(Xcj )||p̂(Xcj ))

≤
m∑

j=1

D
(
p(Xbj , Xcj )||p̂(Xbj , Xcj )

)

because D(p||p̂) ≥ 0. We next apply the Union bound and lemma 1 and obtain

D(p||p̂) ≤ mε′

with probability at least 1 −mδ′ if N fulfills (46). We set ε = mε′ and δ = mδ′ and the
lemma is proven. 3

FDA does not sample from the true Boltzmann distribution, but it uses Boltzmann
selection instead. For later use we change the error function to the L1 Norm |p− p̂|1 =∑

x |p(x) − p̂(x)|.
Lemma 3 Let the assumptions of lemma 2 be fulfilled. Sample {xi}Ni=1 points using the Boltz-
mann distribution pβ . Let ∆β be given. From the sample select N points according to the
probabilities (Boltzmann selection)

pβ(xi) =
e∆βf(xi)

∑N
i=1 pβ(xi)e∆βf(xi)

Let there at least N/4 different points be selected. Compute the empirical distribution

p̂(x) =

m∏

j=1

p̂(xbj |xcj )

Then for
|pβ+∆β − p̂|21 =≤ ε (47)

to hold with probability 1− δ it suffices that

N ≥ 8 ln 2

ε
m
(

2k ln 2 + ln
m

δ

)
(48)

Proof: Because Boltzmann selection selects at leastN/4 different samples, this is equiv-
alent to sample N/4 points from the true distribution pβ+∆β. We apply lemma 2 using
N/4 and obtain

D(p||p̂) ≤ ε′
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with probability at least 1− δ if

N ≥ 4m

ε′

(
2k ln 2 + ln

m

δ

)
(49)

Next we use the bound ((Cover and Thomas, 1989), lemma 12.6.1)

|p− p̂|21 ≤ 2 ln 2D(p||p̂) (50)

We set ε = 2 ln 2ε′ and the lemma is proven. 3

We are now ready to prove the theorem.
Proof of theorem 10: The first population is generated using the uniform random
distribution. Using lemma 3 this gives an error of ε. Using the lemma iteratively, each
new generation adds an error of ε in the worst case. The Union bound gives

|pg − p̂g |21 ≤ gε (51)

with probability at least 1− gδ′. Setting δ = gδ′ gives the bound 32. 3

B The computational complexity of the 2-D Ising model

Barahona (1982) has shown the following surprising result: the 2D Ising model (i.e.
Jij ∈ {−1, 0,+1}) without external magnetic field (hi = 0) can be solved in polynomial
time, whereas the problem with external magnetic field is NP-hard. In fact, Barahona
(1982) proved the following theorem
Theorem 12 Given a planar graph G = (V,E) with all its vertices of degree three to find the
minimum value of

H =
∑

(i,j)∈E
sisj +

∑

i∈V
si (52)

is NP-hard.
Note that each spin has only three neighbors. For the Gaussian Ising spin glass the

question of computational complexity is still open.
This result poses a challenge to our major convergence result for FDA formulated

in theorem 8. Any exact factorization of the 2D Ising models contains a clique of size
O(
√
n) (Gao and Culberson, 2005), independent of an external magnetic field. This

means that FDA needs an exponential effort for provable convergence to the global op-
tima. Since any exact factorization has to contain GADF FDA cannot distinguish be-
tween different classes of Ising models having the same interaction graph.
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Mühlenbein, H. and Höns, R. (2005). The estimation of distributions and the minimum relative
entropy principle. Evolutionary Computation, 13(1):1–27.
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