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Abstract

A new recombination operator� called fuzzy
recombination 	FR
 is introduced for contin�
uous genes� The performance of the operator
is analyzed by means of the equation describ�
ing the response to selection� The operator
is evaluated according to a new design cri�
terion� maximizing the product of heritabil�
ity and standard deviation� The breeder ge�
netic algorithm BGA with FR converges lin�
early for a test suite of benchmark functions�
The computational complexity is also com�
puted� We believe that linear convergence
is the optimum to be achieved by random
search methods� The question remains open�
Can a random search method be found which
gives the best linear convergence� i�e� the
smallest constant for a well�dened class of
functions�

� Introduction

Let an optimization problem be given on a domain
G � Rn

f� � f	x�
 � min
x�G

f	x
� G � Rn� 	�


Wemake no assumptions concerning the convexity and
di�erentiability of the function f	x
� For the mini�
mization a number of algorithms have been proposed�
In this paper we apply the Breeder Genetic Algorithm
BGA �MSV��� to obtain approximations� The BGA
uses a continuous representation� We will investigate
several continuous recombination operators� both em�
pirically and theoretically� Recombination operators
can best be analyzed by the equation for the response
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to selection� The equation states that the progress of
the average tness of the population is proportional to
the selection intensity� the heritability and the stan�
dard deviation of the tness�

This equation leads to a design principle for opera�
tors� An e�cient recombination operator should max�
imize the progress of the average tness for a number
of generations� This means that it shouldmaximize the
product of the heritability and the standard deviation�
Obviously these two goals � maximizing the heritabil�
ity and maximizing the standard deviation � are an�
tagonistic� This makes the design and the analysis of
recombination operators particularly di�cult� Recent
investigations of operators �MS��� �DW��� have only
used one goal� maximizing the correlation between par�
ents and o�spring� But the correlation coe�cient is
directly related to heritability used in the equation for
the response to selection �AM���� Therefore maximiz�
ing the correlation alone is not a useful design criterion
for a recombination operator� The reduction of the
standard deviation has to be taken also into account�

In this paper and also in previous papers we distin�
guish between empirical laws and theorems� Empiri�
cal laws are derived from carefully performed computer
experiments� Theorems are obtained by purely math�
ematical reasoning� Empirical laws are by no means
less true than theorems� They are laws carefully de�
duced from the results of numerical experiments� This
procedure was and is successfully used in physics� A
historical example are the laws describing the move�
ments of the planets� Kepler derived his famous laws
empirically� They explained all the available data� in
addition they could be used for prediction� Newton
was able to derive the same laws by postulating a grav�
itational force between the sun and the planets� Thus
in Newton�s theory Kepler�s laws can be proven math�
ematically� In my terminoloy Newton converted an
empirical law to a theorem by a theory� Now back to
our application� We also would like to derive some of
our empirical laws from a mathematical theory� or at
least part of the laws� Unfortunately many of the em�
pirical laws seem mathematically almost intractable�



But we succeeded to derive theoretically part of main
empirical law of this paper�

The main source of confusion is that the word �em�
pirical� has one sense in which it refers to something
based purely on observation without theoretical depth�
But we use the word in its classical sense� Our the�
sis is that the classical empirical approach is a viable
alternative that should be pursued more consciously
and more rigorously�

The outline of the paper is as follows� In section �
we introduce the mathematical terms which are neces�
sary to evaluate random search algorithms� Then the
equation for the response to selection is used to inves�
tigate several recombination operators� For the evalu�
ation unimodal test functions will be used� It will be
shown that a new recombination operator called fuzzy
recombination gives on the average the best results�
Fuzzy recombination is not derived from the theory of
fuzzy sets� it only resembles certain aspects of fuzzy�
cation� We empirically derive prediction formulas for
gen�� the number of generations needed to achieve a
solution quality of jf� � f j � �� We show that for a
test suite of unimodal functions the convergence is lin�
ear� In section � this result is derived theoretically� We
conclude the paper with some results for multimodal
functions�

� Order of convergence and
computational complexity

The denition of acceptable norms by which to evalu�
ate and compare the e�ciency of random search tech�
niques remains a major research question� The best
method seems to be the study of the distribution of
the number of steps required to reach the essential in�
mum� The algorithms can then be evaluated by com�
paring the expected number of steps and�or higher mo�
ments of this distribution� To do this� we must rely on
idealized benchmark situations� Clearly� not all pos�
sible functions can serve as test functions for such an
investigation�

As a rst step in this direction we proposed in �MSV���
to investigate the scaling of a given algorithm for a
suite of test functions� Scaling denes the computa�
tional complexity of the algorithm� If a test function
is dened for an arbitrary number of variables n� then
the expected number of steps required to reach the es�
sential inmum as a function of n has to be computed�
Computational complexity has been a very useful con�
cept in computer science�

In numerical analysis the order of convergence is used
as a rst criterion for evaluation� The order of conver�
gence measures how fast the approximations converge
to the inmum� The function is held xed� There are
two convergence measures� one dened for the function
values f	x
� one dened for the x values� For simplicity

we restrict our denition to the case that the inmum
is unique�

De�nition �� Let x� denote the in�mum and f� �
f	x�
� Let kxk be a norm in Rn� Then the order of
convergence is linear in f �or in kxk
� if there exists
a constant cf � � �or cx � �� such that

jf	xt��
� f�j � cf � jf	xt
� f�j 	�


or
kxt�� � x�k � cx � kxt � x�k 	�


The di�cult relation between convergence in f and
in kxk will not be discussed here� Algorithms that
converge as a higher power� i�e�

jf	xt��
� f�j � cf � jf	xt
� f�jm m � �

are said to converge superlinearly� A famous exam�
ple is the Newton�Raphson algorithm which converges
quadratically� But linear converge is not bad at all�
Linear convergence means that succesive signicant
digits are won linearly with computational e�ort� In
other contexts the above linear convergence would be
termed �exponential� or �geometrical�� We believe
that linear convergence is the best one can achieve for
random search methods which do not use the deriva�
tive of the given function�

Unfortunately linear convergence is di�erently dened
if the function has to be approximated by some series
of known functions� Here it means

kf � stk � c

t
kf � st��k

where st is the approximation obtained with e�g t data
points�

The following lemma can be easily proven� It gives the
average number of steps required to reduce the error
by a factor of ��

Lemma �� If the order of convergence is linear in
f or in x� then the avarage number of steps sf or sx
required to reduce jf	xt
�f� j or kxt�x�k by a factor
of � is bounded by

sf � ln	�


ln	cf 

� and sx � ln	�


ln	cx

� 	�


We will show in the next section that for specic re�
combination operators the BGA converges linearly in
f for a class of unimodal functions� Furthermore we
will estimate the computational complexity�

� Analysis of recombination operators

A number of di�erent recombination operators have
been proposed for continuous genes� Some of the most
popular are discrete recombination �Sch���� �MSV����



intermediate recombination �Sch���� extended inter�
mediate recombination �MSV���� extended line re�
combination �MSV���� fuzzy Min�Max recombina�
tion �Voi���� linear crossover �Wri��� and BLX�O�a
crossover �ES���� A thorough evaluation of these re�
combination operators has not yet been done� In this
section we will analyze discrete� intermediate and ex�
tended intermediate recombination and a new soft re�
combination scheme gleaned from fuzzy set theory�

Let 	x�� � � � � xn
 and 	y�� � � � � yn
 be the selected par�
ent chromosomes� With discrete recombination 	DR

the o�spring variable zi is chosen randomly from xi
and yi� With intermediate recombination 	IR
 the o��
spring variable is given by 	xi � yi


zi � xi � �i � 	yi � xi


where �i is either xed to ���� chosen randomly in the
interval ��� �� 	IR in the narrow sense
 or chosen ran�
domly in the interval ��d� ��d� 	extended intermediate
recombination 	EIR
 �MSV���
� The rationale behind
EIR is to introduce more variance� Fuzzy recombi�
nation 	FR
 is inspired from fuzzy set theory� The
probability that the o�spring has the value zi is given
by a bimodal distribution�

p	zi
 � f�	xi
� �	yi
g� 	�


with triangular probability distributions �	r
 having
the modal values xi and yi with

xi � d � jyi � xij � r � xi � d � jyi � xij
yi � d � jyi � xij � r � yi � d � jyi � xij 	�


for xi � yi and d � ���� We mainly used d � ��� for
the simulations� All recombination operators are vol�
ume oriented� They create o�spring randomly within
a hyper�rectangle dened by the parent points�

We now derive a design criterion for recombination op�
erators� The analysis is based on the equation for the
response to selection �MSV���� �MSV���� The response
R is dened as the di�erence between the population
mean tness �f of generation t � � and the population
mean of generation t� R	t
 � � �f 	t � �
 � �f 	t
� 	In
population genetics a trait is normally maximized� so
�f 	t � �
 � �f 	t
 is used�
 Breeders measure selection
with the selection di�erential� which is symbolized by
S� It is dened as the di�erence between the mean t�
ness of the selected parents �fs	t
 and the mean tness
of the population� S	t
 � � �fs	t
 � �f 	t
�
The prediction of the response to selection starts with

R	t
 � bt � S	t
� 	�


bt is called realized heritability in quantitative genetics�
The breeder either measures bt in previous generations
or estimates bt using di�erent methods �MSV���� It
is normally assumed that bt is constant for a certain
number of generations� There is no genetics involved in
this equation� It is simply an extrapolation from direct
observation� The prediction of just one generation is

only half the story� The breeder 	and the GA user

would like to predict the cumulative response Rs for s
generations of his breeding scheme�

Rs �
sX

t��

R	t
 � b

sX
t��

S	t
 	�


The response to selection is the product of the heri�
tability and the sum of the selection di�erentials� For
predicting the response to selection b and the selection
di�erentials have to be estimated� Breeders often use
truncation selection or mass selection� In truncation
selection with threshold T � the T best individuals
will be selected as parents� T is normally chosen in
the range �� to �� � The problem of estimating the
selection di�erential is a problem of order statistics�
If the tness values form a normal distribution� the
selection di�erential S	t
 can be computed from

S	t
 � I � 		t
 	�


where 	 is the phenotypical standard deviation� I is
called the selection intensity� It depends nonlinearly
on T 	�Bul���
� For arbitrary distributions the follow�
ing estimate can be shown �Nag���

S	t
 �
r
���� T

T
		t
 	��


The equation for the response to selection leads to a
design criterion for genetic operators� In order to max�
imize the cumulative response� the genetic operator
should maximize the product of the realized heritabil�
ity and the standard deviation of the o�spring genera�
tion� This design criterion we will subsequently use to
analyze the recombination operators dened above�

For the evaluation the following unimodal test func�
tions will be used� They consist of a standard function
	sphere
� a function where the variables have di�erent
importance for the tness function 	ellipse
� a func�
tion where the minimumis at the boundary 	sum
 and
a function which is not di�erentiable at the inmum
	pyramid
�

Fsphere	x
 �
Pn

i�� x
�
i jxij � �

Fellipse	x
 �
Pn��

i�� x�i � ��
� x�n jxij � �

Fsum	x
 �
Pn

i�� xi � � xi � �
Fpyramid	x
 � 	

Pn
i��	� � jxij


n jxij � �

The performance of the recombination operators is
shown in Figure �� If a good approximation is re�
quired� then FR or EIR with d � ��� should be used�
They linearly converge to the solution up to a preci�
sion of ������ EIR with d � � does not converge at
all� Selection reduces the search space� but EIR places
the o�spring in the whole area� So selection is counter�
balanced by this recombination operator� In contrast�
DR converges very early� DR would need a huge pop�
ulation size to achieve a good approximation� For IR



the mean tness decreases the fastest� but it also con�
verges prematurely� IR reduces the variance too fast�
Before we analyze the results in more detail� we for�
mulate the most important result of our simulations
as a law�
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Empirical law �� The early generations of the BGA
simulation always converge linearly in f� for all recom�
bination operators� excluding EIR with d � �� The
slope of this linear region is independent of the size
of the population N � A larger N increases the length
of the linear region �but not the slope� and locates the
optimum with higher accuracy�

Our subsequent analysis will be restricted to the re�
gion giving linear convergence� The challenge for the
GA designer is to nd a recombination operator which
gives a large linear region and a steep slope� This
means that this operator has to introduce the right
portion of variance into the o�spring population� If
the variance is too large then the algorithm does not
converge at all� if it is too small then it converges pre�
maturely�

This problem is investigated for EIR in more detail
in gure �� Here we vary d from � to �� As already
known� IR 	EIR with d � �
 converges the fastest� but
the convergence stops early� EIR with d � ���� gives
the best results� if a solution accuracy of at least ����

is required� EIR with d � � does not converge at all�
The value of the best d gets larger if the innum is not
contained in the interior� Here it would be obviously
better to have a larger d� Simulations conrm this
statement� We just report the results for the function
sum� For d � ���� we have premature convergence�
d � ��� gives the best results� Therefore it seems that
d � ��� is a good choice for a large class of functions�
The same is true for fuzzy recombination FR�

Next we make a more detailed analysis of the recom�
bination operators by using the design criterion for
recombination operators dened earlier� First we com�
pute the realized heritability bt � R	t

S	t
 for DR�
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IR� EIR and FR with d � ���� In gure � the results
for the linear function sum are displayed� The heri�
tability of DR and IR is about ���� FR has a heritabil�
ity of about ���� and EIR of about ����� Heritability
favours DR and IR� but we have already seen that DR
and IR converge prematurely� This conrms our state�
ment made in the introduction that a large heritability
is not enough� The operator has also to create enough
variance� A closer analysis of the reduction of variance
will be made for fuzzy recombination in the next sec�
tion� Figure � indicates that FR performs about �� 
better than EIR� The reason for this fact shows gure
�	b
� The heritability of FR is more than �� larger
than for EIR�
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Our simulations have shown that the behavior of the
fuzzy recombination algorithm is almost deterministic�
In particular the average function value decreases simi�
larly for runs with the same set of parameters but with
di�erent initial population� As stated in empirical law
�� the linear convergence part is independent of the
population size N � if N is greater than a critical pop�
ulation size N�� N� is the size needed to approximate
the innum with the required precision� It depends
om I� n and �� The determination of N� is extremely
di�cult and cannot be discussed in this paper� In�
stead we will empirically determine the computational
complexity of the algorithm�



De�nition 	� Let N be the size of the popula�
tion used by the breeder genetic algorithm� Then
gen�	N� I� n� �� f
 is de�ned as the number of gener�

ations needed to obtain an approximation !f such that
jf� � !f j � ��

We will rst investigate the de�
pendence of gen�	N� I� n� �� f
 on I� afterwards on n
and on f � We assume that we have a su�ciently large
population� so that the required approximation accu�
racy can be obtained� Then gen� is independent from
N by empirical law �� Therefore we will subsequently
write gen�	I� n� �� f
�
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Some of our simulation results are displayed in Figure
�� Note that the behavior of the algorithm is almost
deterministic� There is no visible di�erence between
the ve runs� The gure suggests an inverse propor�
tionate dependence of gen� on I� Using additional
simulation runs� we appliedMathematicaTM to t the
data and got the relation�

gen�	I� n� �� f
 � c�	n� f� �


I���
� 	��


In the same way� we also determined that

gen�	I� n� �� f
 � c�	f� I� �
 � n���� 	��


These two empirical results can be combined� giving
an estimate for the computational complexity

gen�	I� n� �� f
 � c	f� �

n���

I���
	��


This estimate is surprisingly similar to the one ob�
tained for the discrete ONEMAX function �MSV���

gen� � c

p
n

I
�

The di�erence of the two formulas can be partially ex�
plained� A more precise look at the heritability of the
recombination operators shows� that the heritability
decreases with the number of dimensions� This de�
crease is very small 	O	n����
� Therefore we rst did
not notice this second order phenomenon�

The same analysis can be made also for convergence
in kxk� We have used the usual Euclidian norm in Rn�
This measure is independent from the function values�
Therefore it is more general� Figure � shows that the
BGA with FR also converges linearly in k�xk� where �x
is the average of the x values�
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All curves obey the same scaling law formulated in
equation 	��
 for f � The convergence behavior is only
di�erent at the very rst generations� Here kxk in�
creases slightly� But the scaling laws are not e�ected
by this behavior� Note that the results of sphere and
ellipse are almost identical� despite that these func�
tions are very di�erent� Only the function pyramid
converges faster� This has to be expected� because its
level set is a hyper�rectangle which ts better to our
recombination operator� Our recombination operator
creates o�spring within a hyper�rectangle dened by
the selected parents� If the level set is spherical� selec�
tion will select parent points lying on spherical discs�
The recombination operator will create o�spring in a
hyper�rectangle which contains the spherical disc�



In the next section we will derive the scaling law from
a more theoretical view�

� Approximate theoretical solution

It has been observed empirically for quite a time that
the equation for the response to selection is valid for a
large class of problems in quantitative genetics 	�Fal���
VCF��� TB���
� Therefore our analysis starts with
this equation

R	t
 � btI		t
 	��


bt was already numerically computed in the previous
section� In order to solve the above equation� 		t
 has
to be estimated� For simple binary functions� we suc�
cessfully approximated 		t
 by a binomial distribution
	�MSV���
� In general� an estimate of 		t
 for a genetic
population under selection is very di�cult�

In population genetics the following approach has been
tried� The variance V 	t
 and not the standard devia�
tion 	 is investigated� The variance is decomposed into
a number of terms� usually into two terms� These are
the variance of the selected parents and the additional
variance introduced by random mating� Selection re�
duces the variance� and mating with recombination
increases the variance� These two forces have to be
balanced�

We just outline the behavior for a population with nor�
mal distributed tness values� The detailed theoretical
analysis will be described elsewhere� For normal dis�
tributed tness values the variance Vs of the selected
parents can be computed analytically 	�Fal���
� It is
given by

Vs	t
 � 	�� I	I �X

V 	t
� 	��


Here� X denotes the abscissa of the truncation point�
The variance of the o�spring is given by

V 	t
 � ���Vs	t� �
 � Vr	t� �
�
where Vr denotes the variance introduced by mating
with recombination� The factor ��� has to be intro�
duced because two parents give just one o�spring� the
tness value of which depends on the midparent value
and the some �noise� introduced by mating� If we do
not select� then we have Vs	t � �
 � V 	t � �
 and
V 	t
 � V 	t � �
 because the population is in equi�
librium� This gives Vr	t � �
 � ���V 	t � �
� We as�
sume that this equation is valid also if selection is done�
Combining the equations we obtain

V 	t
 � 	� � ���I	I �X

V 	t � �
� 	��


Numerical simulations have conrmed this equation�
A BGA with fuzzy recombination decreases the vari�
ance by a constant� This constant depends on I� but

also on n and the function to be optimized� For the
following theorem we will assume

		t
 � c		t� �
�

where 	 � V ���� This equation has the solution

		t
 � 		�
ct� 	��


It is di�cult to estimate c� especially its dependence
on the selection intensity I and on the size of the
problem n� We have made intensive simulations for
n � ��� ���� ��� and I � ���� ���� ���� ���� Due to space
limitationswe are not able to show the numerical data�
The results are summarized by the following law�

Empirical law 	� For the �tness function sum the
constant csum is given by

csum �
r
�� I���

n���
	��


We are now able to prove the following theorem�

Theorem �� Under the assumption of empirical law
	 the BGA converges linearly in f� The constants are
given by

csum �

r
�� I���

n���
ssum � �� ln	�
 � n

���

I���
� 	��


Proof� From R	t
 � � �f 	t� �
 � �f 	t
 we obtain from
the equation for the response

j �f 	t� �
j � 	� � bI
		t

�f 	t


j �f	t
j� 	��


For notational convenience we assume f� � �� The
average tness is obtained from the sum

� �f 	t
 � �f 	�
 �
t��X
s��

R	s
�

This equation can be solved easily

�f 	t
 � �f 	�
� bI		�

�� ct

�� c
�

We assume that the population converges to the in�
mum� i�e �f 	t
	 �� Then

�f	�
 � bI		�

�

�� c
�

Inserting this equation� we obtain

�f 	t
 � bI		�

ct

�� c
� bI

		t


�� c

Therefore we get the equation

�f 	t


		t

�

bI

�� c
	��




Inserting this expression into the rst equation we ob�
tain �f	t��
 � c � �f	t
� This proves the rst conjecture�
The constant ssum is obtained from lemma � by re�
placing ln

p
�� x in � with ����x� ��

The estimate given in equation 	��
 is quite accurate�
If we set � � ������ I � ���� n � ��� we obtain
sf � ���� From gure � we get sf � ���� For dif�
ferent functions the constant cf is di�erent� but the
constant sf shows always the same asymptotic behav�
ior concerning I and n�

Equation �� is an interesting result by itself� It shows
how the variance has to be balanced� In order to
achieve linear convergence the mean distance to the
optimum divided by the variance has to be a constant�
Unfortunately the mean distance to the optimum is
not known for a real BGA run� therefore this quotient
cannot be directly used�

The BGA with fuzzy recombination has been applied
to a number of real�life functions� In the next section
we show just one interesting example in the domain of
multimodal functions�

� Multimodal functions

The BGA with FR is a volume�oriented search which
is also able to locate the global minimum of multi�
modal functions� The analysis presented in this paper
can be extended to multimodal functions� The results
for two popular multimodal functions� Rastrigin�s and
Griewank�s function �MSV��� are shown in Figure ��

Figure � shows that the convergence speed at the be�
ginning and at the end of the search is exactly like the
convergence speed for the sphere� In both curves there
is a plateau where the speed of convergence is reduced�
The reason for this behavior lies in the structure of
these functions� On a broad scale both look like a
sphere� If the attractor region of the inmum is found�
the functions again look like a sphere� In�between
these two regions they oscillate like a sine function�
and the convergence slows down because the heritabil�
ity gets very small� The plateau region is very small
for strong selection 	I � ���
� Therefore the number
of generations needed to approximate the global mini�
mumwith an accuracy of � � ����� is almost the same
as for the unimodal sphere�

We postpone a more detailed investigation of multi�
modal functions to a larger paper� But the following
observations can be made� Multimodal function where
the smallest minima are clustered in an area are easily
optimized�
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� Conclusion

We have shown that a BGA with fuzzy recombination
converges linearly for a set of benchmark functions�
An exact mathematical denition of the class of func�
tions where the BGA will converge linearly is di�cult�
But some comments can be given describing the class
of functions where the BGA with FR alone will not
converge� Fuzzy recombination is obviously a volume
oriented search� The volume to be searched is a hyper�
rectangle dened by the parents� The hyperrectangle
is parallel to the axes� If the minimum of the function
is located at the end of a very steep and curved val�
ley� this recombination method is obviously not able to
locate the minimum� The steep valley is a very small
part of the hyperrectangle� This problem can be solved
by introducing additional operators� like line recombi�
nation �MSV���� Another solution is to transform the
axes� so that the direction of the valley is one of the
axis�

In our opinion this paper makes two major contri�
butions� First� it shows that the classical science of
breeding can also be used as the theory for genetic al�
gorithms� Second� we prove that the BGA converges
linearly for a large class of unimodal functions� We sus�
pect that several of the popular GA implementations
do not converge linearly� We cannot be sure because
most researchers still compare GA"s on a very small
and xed set of benchmark functions� This is not a ma�
ture method of empirical science mentioned in the in�
troduction� Such experiments do not give insight� but
just numbers� Therefore we iterate our hope �MSV���
that researchers proposing new GA implementations
investigate the order of convergence and the computa�
tional complexity of their algorithms� This is the only
way to change the research from mystic and individual
belief to a science with a solid foundation�
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