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Abstract to selection. The equation states that the progress of

A new recombination operator, called fuzzy
recombination (FR) is introduced for contin-
uous genes. The performance of the operator
is analyzed by means of the equation describ-
ing the response to selection. The operator
is evaluated according to a new design cri-
terion: maximizing the product of heritabil-
ity and standard deviation. The breeder ge-
netic algorithm BGA with FR converges lin-
early for a test suite of benchmark functions.
The computational complexity is also com-
puted. We believe that linear convergence
is the optimum to be achieved by random
search methods. The question remains open:
Can a random search method be found which
gives the best linear convergence, 1.e. the
smallest constant for a well-defined class of
functions?

1 Introduction

Let an optimization problem be given on a domain

GCR®

f7=1(@") = min f(x),

GCR". (1)
TEG
We make no assumptions concerning the convexity and
differentiability of the function f(x). For the mini-
mization a number of algorithms have been proposed.
In this paper we apply the Breeder Genetic Algorithm
BGA [MSV93] to obtain approximations. The BGA
uses a continuous representation. We will investigate
several continuous recombination operators, both em-
pirically and theoretically. Recombination operators
can best be analyzed by the equation for the response
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the average fitness of the population is proportional to
the selection intensity, the heritability and the stan-
dard deviation of the fitness.

This equation leads to a design principle for opera-
tors. An efficient recombination operator should max-
imize the progress of the average fitness for a number
of generations. This means that it should mazimize the
product of the heritability and the standard deviation.
Obviously these two goals — maximizing the heritabil-
ity and maximizing the standard deviation — are an-
tagonistic. This makes the design and the analysis of
recombination operators particularly difficult. Recent
investigations of operators [MS94] [DW94] have only
used one goal, maximizing the correlation between par-
ents and offspring. But the correlation coefficient is
directly related to heritability used in the equation for
the response to selection [AM94]. Therefore maximiz-
ing the correlation alone is not a useful design criterion
for a recombination operator. The reduction of the
standard deviation has to be taken also into account.

In this paper and also in previous papers we distin-
guish between empirical laws and theorems. Empiri-
cal laws are derived from carefully performed computer
experiments. Theorems are obtained by purely math-
ematical reasoning. Empirical laws are by no means
less true than theorems. They are laws carefully de-
duced from the results of numerical experiments. This
procedure was and is successfully used in physics. A
historical example are the laws describing the move-
ments of the planets. Kepler derived his famous laws
empirically. They explained all the available data, in
addition they could be used for prediction. Newton
was able to derive the same laws by postulating a grav-
itational force between the sun and the planets. Thus
in Newton’s theory Kepler’s laws can be proven math-
ematically. In my terminoloy Newton converted an
empirical law to a theorem by a theory. Now back to
our application. We also would like to derive some of
our empirical laws from a mathematical theory, or at
least part of the laws. Unfortunately many of the em-
pirical laws seem mathematically almost intractable.



But we succeeded to derive theoretically part of main
empirical law of this paper.

The main source of confusion is that the word “em-
pirical” has one sense in which 1t refers to something
based purely on observation without theoretical depth.
But we use the word in its classical sense. Our the-
sis is that the classical empirical approach is a viable
alternative that should be pursued more consciously
and more rigorously.

The outline of the paper is as follows. In section 2
we introduce the mathematical terms which are neces-
sary to evaluate random search algorithms. Then the
equation for the response to selection is used to inves-
tigate several recombination operators. For the evalu-
ation unimodal test functions will be used. It will be
shown that a new recombination operator called fuzzy
recombination gives on the average the best results.
Fuzzy recombination is not derived from the theory of
fuzzy sets, 1t only resembles certain aspects of fuzzyfi-
cation. We empirically derive prediction formulas for
gen®, the number of generations needed to achieve a
solution quality of |f* — f| < ¢. We show that for a
test suite of unimodal functions the convergence is lin-
ear. In section 4 this result is derived theoretically. We
conclude the paper with some results for multimodal
functions.

2 Order of convergence and
computational complexity

The definition of acceptable norms by which to evalu-
ate and compare the efficiency of random search tech-
niques remains a major research question. The best
method seems to be the study of the distribution of
the number of steps required to reach the essential in-
fimum. The algorithms can then be evaluated by com-
paring the expected number of steps and /or higher mo-
ments of this distribution. To do this, we must rely on
idealized benchmark situations. Clearly, not all pos-
sible functions can serve as test functions for such an
investigation.

As afirst step in this direction we proposed in [MSV94]
to investigate the scaling of a given algorithm for a
suite of test functions. Scaling defines the computa-
tional complexity of the algorithm. If a test function
is defined for an arbitrary number of variables n, then
the expected number of steps required to reach the es-
sential infimum as a function of n has to be computed.
Computational complexity has been a very useful con-
cept in computer science.

In numerical analysis the order of convergence is used
as a first criterion for evaluation. The order of conver-
gence measures how fast the approximations converge
to the infimum. The function is held fixed. There are
two convergence measures, one defined for the function
values f(x), one defined for the x values. For simplicity

we restrict our definition to the case that the infimum
1s unique.

Definition 1: Let z* denote the infimum and f* =
f(z*). Let ||x|| be a norm in R™. Then the order of
convergence is linear in f (or in ||z||), if there exists
a constant ¢y < 1 (or ¢x < 1) such that

[f(@eg1) = [T < ep - | f(2e) = [ (2)
or
lzep1 — 27| < e - [J2e — 27| (3)

The difficult relation between convergence in f and
in ||z|| will not be discussed here. Algorithms that
converge as a higher power, i.e.

|f(zer1) = I < ep - [f(ze) = £

are said to converge superlinearly. A famous exam-
ple is the Newton-Raphson algorithm which converges
quadratically. But linear converge is not bad at all.
Linear convergence means that succesive significant
digits are won linearly with computational effort. In
other contexts the above linear convergence would be
termed “exponential” or “geometrical”. We believe
that linear convergence is the best one can achieve for
random search methods which do not use the deriva-
tive of the given function.

m>1

Unfortunately linear convergence is differently defined
if the function has to be approximated by some series
of known functions. Here it means

C
1 = sell < ZIf = sl

where s; 1s the approximation obtained with e.g ¢ data
points.

The following lemma can be easily proven. It gives the
average number of steps required to reduce the error
by a factor of e.

Lemma 1: If the order of convergence is linear n
forn z, then the avarage number of steps s; or sp
required to reduce |f(x:)— f*| or ||z —x*|| by a factor

of € is bounded by

In(e)
In(ez)’

In(e)
= Taey)

We will show in the next section that for specific re-
combination operators the BGA converges linearly in
f for a class of unimodal functions. Furthermore we
will estimate the computational complexity.

and s, <

(4)

3 Analysis of recombination operators

A number of different recombination operators have
been proposed for continuous genes. Some of the most
popular are discrete recombination [Sch81], [MSV93],



intermediate recombination [Sch81], extended inter-
mediate recombination [MSV93], extended line re-
combination [MSV93], fuzzy Min-Max recombina-
tion [Vo0i92], linear crossover [Wri91] and BLX-O.a
crossover [ES92]. A thorough evaluation of these re-
combination operators has not yet been done. In this
section we will analyze discrete, intermediate and ex-
tended intermediate recombination and a new soft re-
combination scheme gleaned from fuzzy set theory.

Let (#1,...,2y) and (y1,...,yn) be the selected par-
ent chromosomes. With discrete recombination (DR)
the offspring variable z; 1s chosen randomly from x;
and y;. With intermediate recombination (IR) the off-
spring variable is given by (z; < ;)

zi = @i+ o (Yi — %)

where «; is either fixed to 0.5, chosen randomly in the
interval [0,1] (IR in the narrow sense) or chosen ran-
domly in the interval [—d, 14+d] (extended intermediate
recombination (EIR) [MSV93]). The rationale behind
EIR is to introduce more variance. Fuzzy recombi-
nation (FR) is inspired from fuzzy set theory. The
probability that the offspring has the value z; is given

by a bimodal distribution,

p(zi) € {6(xi), (4i)}, ()

with triangular probability distributions ¢(r) having
the modal values x; and y; with

vi—d-ly—m| Sr<mde i —nl g
Yi —d -y —ag| <r <y +d- |y — x4

for #; < y; and d > 0.5. We mainly used d = 0.5 for
the simulations. All recombination operators are vol-
ume oriented. They create offspring randomly within
a hyper-rectangle defined by the parent points.

We now derive a design criterion for recombination op-
erators. The analysis is based on the equation for the
response to selection [MSV93], [MSV94]. The response
R is defined as the difference between the population
mean fitness f of generation ¢ + 1 and the population
mean of generation ¢, R(t) = —f(t+ 1)+ f(¢). (In
population genetics a trait is normally maximized, so
f(t+ 1) — f(t) is used.) Breeders measure selection
with the selection differential, which is symbolized by
S. It is defined as the difference between the mean fit-
ness of the selected parents f;(¢) and the mean fitness

of the population, S(t) = —fs () + f(1).
The prediction of the response to selection starts with
R(t) = b; - S(2). (7)

by 1s called realized heritability in quantitative genetics.
The breeder either measures b; in previous generations
or estimates b; using different methods [MSV94]. Tt
is normally assumed that b; is constant for a certain
number of generations. There 1s no genetics involved in
this equation. It is simply an extrapolation from direct
observation. The prediction of just one generation is

only half the story. The breeder (and the GA user)
would like to predict the cumulative response R for s
generations of his breeding scheme.

Ry=> R(t)=b>_S(t) (8)

The response to selection 1s the product of the heri-
tability and the sum of the selection differentials. For
predicting the response to selection b and the selection
differentials have to be estimated. Breeders often use
truncation selection or mass selection. In truncation
selection with threshold 7', the 7% best individuals
will be selected as parents. T is normally chosen in
the range 10% to 50%. The problem of estimating the
selection differential is a problem of order statistics.
If the fitness values form a normal distribution, the
selection differential S(¢) can be computed from

S(t) = 1-o(1) (9)

where o i1s the phenotypical standard deviation. I is
called the selection intensity. It depends nonlinearly
on T ([Bul80]). For arbitrary distributions the follow-
ing estimate can be shown [Nag81]

5(1) <\~ o(t) (10)

The equation for the response to selection leads to a
design criterion for genetic operators. In order to max-
imize the cumulative response, the genetic operator
should mazimize the product of the realized heritabil-
ity and the standard deviation of the offspring genera-
tion. This design criterion we will subsequently use to
analyze the recombination operators defined above.

For the evaluation the following unimodal test func-
tions will be used. They consist of a standard function
(sphere), a function where the variables have different
importance for the fitness function (ellipse), a func-
tion where the minimumis at the boundary (sum) and
a function which 1s not differentiable at the infimum
(pyramid).

Fsphere(x) = Z?:l l‘lz |$Z| S 1
Fellipse(x = Z?:_ll l’ZZ + 104 l‘,zl |$Z| S 1
Fsum(l‘) = ?:1 Ty 0<a; <1
prramid(£) = (Zi:l(l — |l‘z|))/n |xl| <1

The performance of the recombination operators is
shown in Figure 1. If a good approximation is re-
quired, then FR or EIR with d = 0.5 should be used.
They linearly converge to the solution up to a preci-
sion of 10712, EIR with d = 1 does not converge at
all. Selection reduces the search space, but EIR places
the offspring in the whole area. So selection is counter-
balanced by this recombination operator. In contrast,
DR converges very early. DR would need a huge pop-
ulation size to achieve a good approximation. For IR



the mean fitness decreases the fastest, but 1t also con-
verges prematurely. IR reduces the variance too fast.
Before we analyze the results in more detail, we for-
mulate the most important result of our simulations
as a law.
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Figure 1: Sphere, n=32, popsize N=512, I=1.4; A: DR,
B: EIR with d = 1.0, C: FR with d = 0.5, D: EIR with
d =0.5, E: FR with d = 1.0, F: IR : mean fitness

Empirical law 1: The early generations of the BGA
simulation always converge linearly in f, for all recom-
bination operators, excluding FIR with d = 1. The
slope of this linear region is independent of the size
of the population N. A larger N increases the length
of the linear region (but not the slope) and locates the
optimum with higher accuracy.

Our subsequent analysis will be restricted to the re-
gion giving linear convergence. The challenge for the
GA designer is to find a recombination operator which
gives a large linear region and a steep slope. This
means that this operator has to introduce the right
portion of variance into the offspring population. If
the variance is too large then the algorithm does not
converge at all, if it is too small then it converges pre-
maturely.

This problem is investigated for EIR in more detail
in figure 2. Here we vary d from 0 to 1. As already
known, IR (EIR with d = 0) converges the fastest, but
the convergence stops early. EIR with d = 0.25 gives
the best results, if a solution accuracy of at least 10~°
is required. EIR with d = 1 does not converge at all.
The value of the best d gets larger if the infinum is not
contained in the interior. Here it would be obviously
better to have a larger d. Simulations confirm this
statement. We just report the results for the function
sum. For d = 0.25 we have premature convergence,
d = 0.5 gives the best results. Therefore it seems that
d = 0.5 1s a good choice for a large class of functions.
The same is true for fuzzy recombination FR.

Next we make a more detailed analysis of the recom-
bination operators by using the design criterion for
recombination operators defined earlier. First we com-

pute the realized heritability b, = R(t)/S(¢) for DR,

10 ——

01 k!

001} |}

MF

0.001

0.0001 +

le-05 ¢

1le-06

. b I . . . . . .
0O 20 40 60 80 100 120 140 160 180 200
GEN

Figure 2: Sphere, n = 32, popsize N = 1024, [ = 1.2:
Mean fitness MF

IR, EIR and FR with d = 0.5. In figure 3 the results
for the linear function sum are displayed. The heri-
tability of DR and IR is about 1.0. FR has a heritabil-
ity of about 0.83 and EIR of about 0.73. Heritability
favours DR and IR, but we have already seen that DR
and IR converge prematurely. This confirms our state-
ment made in the introduction that a large heritability
is not enough. The operator has also to create enough
variance. A closer analysis of the reduction of variance
will be made for fuzzy recombination in the next sec-
tion. Figure 1 indicates that FR performs about 10%
better than EIR. The reason for this fact shows figure
2(b). The heritability of FR is more than 10% larger
than for EIR.
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Figure 3: Sum, n = 32, N = 1024, [ = 1.6: realized
heritability R/S

Our simulations have shown that the behavior of the
fuzzy recombination algorithm is almost deterministic.
In particular the average function value decreases simi-
larly for runs with the same set of parameters but with
different initial population. As stated in empirical law
1, the linear convergence part is independent of the
population size N, if N is greater than a critical pop-
ulation size N*. N* is the size needed to approximate
the infinum with the required precision. It depends
om I, n and €. The determination of N* is extremely
difficult and cannot be discussed in this paper. In-
stead we will empirically determine the computational
complexity of the algorithm.



Definition 2: Let N be the size of the popula-
tion used by the breeder genetic algorithm. Then
gen*(N,I,n, ¢, f) is defined as the number of gener-
ations needed to obtain an approximation [ such that

If = fl<e

We will first investigate the de-
pendence of gen*(N,I,n,¢, f) on I, afterwards on n
and on f. We assume that we have a sufficiently large
population, so that the required approximation accu-
racy can be obtained. Then gen* is independent from
N by empirical law 1. Therefore we will subsequently
write gen™ (I, n, €, f).
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Figure 4: Average fitness of (a) Sphere (b) Sum, n = 32,
N = 512, 5 runs overlaid.

Some of our simulation results are displayed in Figure
4. Note that the behavior of the algorithm is almost
deterministic. There is no visible difference between
the five runs. The figure suggests an inverse propor-
tionate dependence of gen® on I. Using additional
simulation runs, we applied M athematica™™ to fit the
data and got the relation:

c n’f’E
%. (11)

gen*(I,n, e, f) =

In the same way, we also determined that

gen*(I,n, e, f) = ca(f, I,€) - n®7. (12)

These two empirical results can be combined, giving
an estimate for the computational complexity

n0.7

gen*(I,n, e, f) = e(f, E)F (13)

This estimate is surprisingly similar to the one ob-

tained for the discrete ONEMAX function [MSV94]

gen™ = c@.

I

The difference of the two formulas can be partially ex-
plained. A more precise look at the heritability of the
recombination operators shows, that the heritability
decreases with the number of dimensions. This de-
crease is very small (O(n=%%). Therefore we first did
not notice this second order phenomenon.

The same analysis can be made also for convergence
in ||z||. We have used the usual Euclidian norm in R”.
This measure is independent from the function values.
Therefore it is more general. Figure 5 shows that the
BGA with FR also converges linearly in [|Z||, where #
is the average of the z values.
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Figure 5: N = 1024, I = 1.2: Average Euclidian distance
Midnorm

All curves obey the same scaling law formulated in
equation (12) for f. The convergence behavior is only
different at the very first generations. Here ||z|| in-
creases slightly. But the scaling laws are not effected
by this behavior. Note that the results of sphere and
ellipse are almost identical, despite that these func-
tions are very different. Only the function pyramid
converges faster. This has to be expected, because its
level set is a hyper-rectangle which fits better to our
recombination operator. OQur recombination operator
creates offspring within a hyper-rectangle defined by
the selected parents. If the level set is spherical, selec-
tion will select parent points lying on spherical discs.
The recombination operator will create offspring in a
hyper-rectangle which contains the spherical disc.



In the next section we will derive the scaling law from
a more theoretical view.

4 Approximate theoretical solution

It has been observed empirically for quite a time that
the equation for the response to selection is valid for a
large class of problems in quantitative genetics ([Fal81,
VCF91, TB94]). Therefore our analysis starts with
this equation

R(1) = byIo(t) (14)

b; was already numerically computed in the previous
section. In order to solve the above equation, ¢(?) has
to be estimated. For simple binary functions, we suc-
cessfully approximated ¢(¢) by a binomial distribution
([MSV94]). In general, an estimate of o(¢) for a genetic
population under selection is very difficult.

In population genetics the following approach has been
tried. The variance V(¢) and not the standard devia-
tion o is investigated. The variance is decomposed into
a number of terms, usually into two terms. These are
the variance of the selected parents and the additional
variance introduced by random mating. Selection re-
duces the variance, and mating with recombination
increases the variance. These two forces have to be
balanced.

We just outline the behavior for a population with nor-
mal distributed fitness values. The detailed theoretical
analysis will be described elsewhere. For normal dis-
tributed fitness values the variance V; of the selected
parents can be computed analytically ([Fal81]). Tt is
given by

Vi) = (1= I(I = X))V (). (15)

Here, X denotes the abscissa of the truncation point.
The variance of the offspring is given by

V(t) = 05Vi(t — 1)+ Vi(t — 1),

where V,. denotes the variance introduced by mating
with recombination. The factor 0.5 has to be intro-
duced because two parents give just one offspring, the
fitness value of which depends on the midparent value
and the some “noise” introduced by mating. If we do
not select, then we have Vi(t — 1) = V(t — 1) and
V(t) = V(t — 1) because the population is in equi-
librium. This gives V,.(t — 1) = 0.5V (t — 1). We as-
sume that this equation is valid also if selection is done.
Combining the equations we obtain

V(t)=(1—05I(1— X)V(t—1). (16)

Numerical simulations have confirmed this equation.
A BGA with fuzzy recombination decreases the vari-
ance by a constant. This constant depends on I, but

also on n and the function to be optimized. For the
following theorem we will assume

o(t) = co(t—1),

where ¢ = V/2. This equation has the solution

o(t) = a(0)c". (17)

It is difficult to estimate ¢, especially its dependence
on the selection intensity I and on the size of the
problem n. We have made intensive simulations for
n=32,128,512and I = 2.6,2.0,1.6,1.2. Due to space
limitations we are not able to show the numerical data.
The results are summarized by the following law.

Empirical law 2: For the filness function sum the
constant Csum 1S given by

Ji4
Csum R 1- W (18)

We are now able to prove the following theorem.

Theorem 1: Under the assumption of empirical law
2 the BGA converges linearly in f. The constants are
given by

Ti4 0.7
Ssum & —21n(e) - %. (19)

Csum = 1- 0.7

Proof: From R(t) = —f(t + 1) + f(t) we obtain from
the equation for the response

_ ot _
Fetoi<a-ufimr @)
f@)
For notational convenience we assume f* = 0. The

average fitness is obtained from the sum
) ) t—1
—f(t) + F(0) = Y _ R(s).
s=1
This equation can be solved easily

- 1—¢t

Ft) = 7(0) — bIo(0) =5

We assume that the population converges to the infi-
mum, i.e f(¢) — 0. Then

1
0)=blc(0)—.
(0) = b0 (0) -~
Inserting this equation, we obtain
- c a(t)
t)y="5blc(0 =51
1) o )1 —c 1—c
Therefore we get the equation

Ft) _ b1

oty 1-c¢ (21)




Inserting this expression into the first equation we ob-
tain f(t+1) < e- f(¢). This proves the first conjecture.

The constant sgy,, 18 obtained from lemma 1 by re-

placing In+/1 — z in 4 with —0.5z. a.

The estimate given in equation (19) is quite accurate.
If we set ¢ = 10719 I = 1.4, n = 32, we obtain
sy ~ 325. From figure 3 we get s; ~ 290. For dif-
ferent functions the constant c; is different, but the
constant s; shows always the same asymptotic behav-
ior concerning I and n.

Equation 21 is an interesting result by itself. It shows
how the variance has to be balanced. In order to
achieve linear convergence the mean distance to the
optimum divided by the variance has to be a constant.
Unfortunately the mean distance to the optimum is
not known for a real BGA run, therefore this quotient
cannot be directly used.

The BGA with fuzzy recombination has been applied
to a number of real-life functions. In the next section
we show just one interesting example in the domain of
multimodal functions.

5 Multimodal functions

The BGA with FR is a volume-oriented search which
is also able to locate the global minimum of multi-
modal functions. The analysis presented in this paper
can be extended to multimodal functions. The results
for two popular multimodal functions, Rastrigin’s and
Griewank’s function [MSV93] are shown in Figure 6.

Figure 6 shows that the convergence speed at the be-
ginning and at the end of the search is exactly like the
convergence speed for the sphere. In both curves there
is a plateau where the speed of convergence 1s reduced.
The reason for this behavior lies in the structure of
these functions. On a broad scale both look like a
sphere. If the attractor region of the infimum is found,
the functions again look like a sphere. In-between
these two regions they oscillate like a sine function,
and the convergence slows down because the heritabil-
ity gets very small. The plateau region is very small
for strong selection (I = 1.4). Therefore the number
of generations needed to approximate the global mini-
mum with an accuracy of ¢ = 10710 is almost the same
as for the unimodal sphere.

We postpone a more detailed investigation of multi-
modal functions to a larger paper. But the following
observations can be made. Multimodal function where
the smallest minima are clustered in an area are easily
optimized.
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Figure 6: N =512, n = 32, FR, 5 runs overlaid.



6 Conclusion

We have shown that a BGA with fuzzy recombination
converges linearly for a set of benchmark functions.
An exact mathematical definition of the class of func-
tions where the BGA will converge linearly is difficult.
But some comments can be given describing the class
of functions where the BGA with FR alone will not
converge. Fuzzy recombination i1s obviously a volume
oriented search. The volume to be searched is a hyper-
rectangle defined by the parents. The hyperrectangle
is parallel to the axes. If the minimum of the function
is located at the end of a very steep and curved val-
ley, this recombination method is obviously not able to
locate the minimum. The steep valley is a very small
part of the hyperrectangle. This problem can be solved
by introducing additional operators, like line recombi-
nation [MSV93]. Another solution is to transform the
axes, so that the direction of the valley is one of the
axis.

In our opinion this paper makes two major contri-
butions. First, it shows that the classical science of
breeding can also be used as the theory for genetic al-
gorithms. Second, we prove that the BGA converges
linearly for a large class of unimodal functions. We sus-
pect that several of the popular GA implementations
do not converge linearly. We cannot be sure because
most researchers still compare GA‘s on a very small
and fixed set of benchmark functions. This is not a ma-
ture method of empirical science mentioned in the in-
troduction. Such experiments do not give insight, but
just numbers. Therefore we iterate our hope [MSV93]
that researchers proposing new GA implementations
investigate the order of convergence and the computa-
tional complexity of their algorithms. This is the only
way to change the research from mystic and individual
belief to a science with a solid foundation.
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