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Abstract:
A new recombination operator, called Gene Pool Recombination (GPR) is introduced.
In GPR, the genes are randomly picked from the gene pool defined by the selected par-
ents. The mathematical analysis of GPR is easier than for two-parent recombination
(TPR) normally used in genetic algorithms. There are n difference equations for the
marginal gene frequencies that describe the evolution of a population for a fitness func-
tion of size n. For simple fitness functions TPR and GPR perform similarly, with a
slight advantage for GPR. Furthermore the mathematical analysis shows that a genetic
algorithm with only selection and recombination is not a global optimization method,
in contrast to popular belief.

Keywords: Difference equations, genetic algorithms, Hardy-Weinberg equilibrium,
recombination.

1. Introduction
Genetic algorithms (GAs) use at least three different components for guiding the search
to an optimum — selection, mutation and recombination. Understanding the evolu-
tion of genetic populations is still an important problem for biology and for scientific
breeding. Mühlenbein and Schlierkamp-Voosen (1993, 1994) have introduced classical
approaches from population genetics, the science of breeding, and statistics to analyze
genetic algorithms. They describes the evolution of genetic populations as a dynamical
system by difference or differential equations. Analyzing GAs that use both recombi-
nation and selection turns out to be especially difficult. The problem is that the mat-
ing of two genotypes creates a complex linkage between genes at different loci. This
linkage is very hard to model and represents the major problem in population genetics
(Naglyaki 1992).

For simple linear fitness functions we have found approximate solutions to the equa-
tions that describe the evolution of a genetic population through selection and recom-
bination. Looking carefully at the assumptions leading to the approximation, we found
that the equations obtained would be exact if a different recombination scheme were
used. This recombination scheme we call gene pool recombination (GPR). In GPR, for
each locus the two alleles to be recombined are chosen independently from the gene
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pool defined by the selected parent population. The biologically inspired idea of re-
stricting the recombination to the alleles of two parents for each offspring is abandoned.
The latter recombination we will call two-parent recombination (TPR).

The idea of using more than two parents for recombination is not new. Already
Mühlenbein (1989) used eight parents; the offspring allele was obtained by a majority
vote. Multi-parent recombination has also been investigated recently by Eiben, Raue
and Ruttkay (1994) though their results are somewhat inconclusive. For binary func-
tions the bit-based simulated crossover (BSC) of Syswerda (1993) is similar to GPR.
However, his implementation merged selection and recombination. An implementa-
tion of BSC which separates selection and recombination was empirically investigated
by Eshelman and Schaffer (1993). GPR is an extension of BSC, it can be used for any
representation — discrete or continuous.

In this paper we will investigate TPR and GPR for discrete binary functions. It will
be shown that GPR is easier to analyze than TPR. Furthermore, it converges faster.
Nevertheless, in many cases TPR can be considered as an approximation to GPR.

2. Response to selection
In this section we summarize the theory presented in Mühlenbein and Schlierkamp-
Voosen (1993, 1994). Let �f �t� be the average fitness of the population at generation t.
The response to selection is defined as

R�t� � �f�t � ��� �f �t�� (1)

The amount of selection is measured by the selection differential

S�t� � �fs�t�� �f�t�� (2)

where �fs�t� is the average fitness of the selected parents. The equation for the response
to selection relates R and S:

R�t� � b�t� � S�t�� (3)

The value b�t� is called the realized heritability. For many fitness functions and selec-
tion schemes, the selection differential can be expressed as a function of the standard
deviation �p of the fitness of the population. For truncation selection (selecting the
T �N best individuals) and for normally distributed fitness, the selection differential is
proportional to the standard deviation (Falconer 1981):

S�t�

�p�t�
� I�

The value I is called the selection intensity. For arbitrary distributions one can show
the following estimate (Nagaraja 1982):
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�p�t�
�
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�

For normally distributed fitness the famous equation for the response to selection is
obtained (Falconer 1981):

R�t� � I � b�t� � �p�t�� (4)



The above equation is valid for a large range of distributions, not just for a normal
distribution. The response depends on the selection intensity, the realized heritability,
and the standard deviation of the fitness distribution. In order to use the above equation
for prediction, one has to estimate b�t� and �p�t�. The equation also gives a design goal
for genetic operators — to maximize the product of heritability and standard deviation.
In other words, if two recombination operators have the same heritability, the operator
creating an offspring population with larger standard deviation is to be preferred.

The equation defines also a design goal for a selection method — to maximize the
product of selection intensity and standard deviation. In simpler terms, if two selection
methods have the same selection intensity, the method giving the higher standard de-
viation of the selected parents is to be preferred. For proportionate selection as used
by the simple genetic algorithm (Goldberg 1989) it was shown by Mühlenbein and
Schlierkamp-Voosen (1993) that

S�t�

�p�t�
�

�p�t�
�f�t�

�

The equation shows that the selection intensity of proportionate selection goes to zero
for t � inf, whereas truncation selection has a constant selection intensity. Propor-
tionate selection selects too weak in the final stages of the search.

Before showing that the evolution of a genetic population depends indeed on the
selection intensity, the heritability and the standard deviation, we will derive exact dif-
ference equations for two and three loci directly.

3. Exact analysis of TPR for two loci
For simplicity we restrict the discussion to two loci and proportionate selection. In this
case there are four possible genotypes: ��� ��� ��� ��� ��� ��� and ��� �� which we index
by i � ��� �� �� 	�. We denote their fitness valuesm��m��m�, andm� respectively. Let
qi�t� be the frequency of genotype i at generation t. We assume an infinite population
and uniform crossover. For proportionate selection the exact equations describing the
evolution of the frequencies qi can be derived easily. These equations — known for
diploid chromosomes in population genetics (Crow and Kimura 1970) — assume an
infinite population.

qi�t � �� �
mi

�f�t�
qi�t� � �i

D�t�

� �f�t��
i � �� �� �� 	 (5)

with � � ���� �� �����. �f �t� �
P

�

i��miqi�t� is the average fitness of the population.
D�t� defines the deviation from linkage equilibrium

D�t� � m�m�q��t�q��t� �m�m�q��t�q��t�� (6)

Note that D�t� � � if q��t�q��t� � q��t�q��t� and m�m� � m�m�. The first condi-
tion is fulfilled if the genotypes are binomially distributed. This assumption is called
the Hardy-Weinberg equilibrium in population genetics. The general nonlinear differ-
ence equations have not yet been solved analytically (see the discussion by Naglyaki
(1992)), but it is possible to derive an exact expression for the realized heritability. By
summation we obtain

R�t� � �f�t � ��� �f �t� �
V �t�
�f �t�

� �m� �m� �m� �m��
D�t�

� �f �t���
(7)



where V �t� � ���t� �
P

qi�t��mi � �f �t��� denotes the variance of the population.
Using S�t� � V �t�� �f �t� we obtain the exact equation for the heritability,

b�t� � �� �m� �m� �m� �m��
D�t�

� �f�t�V �t�
� (8)

In general, b�t� depends on the genotype frequencies. Note that b�t� � � ifD�t� � � or
m��m� � m��m�. The second assumption is fulfilled for the function ONEMAX(2)
which has the fitness values m� � ��m� � m� � ��m� � �. From (5) we obtain

�f �t� �� � q��t � �� � q��t� �� � �q��t � ��

�
q��t� � q��t� � 
q��t�

�f �t�
� � �

�q��t�
�f �t�

�

Let p�t� denote the frequency of allele 1. Then by definition �f�t� � �p�t�. Therefore
we obtain

R�t� � �� p�t� �
B��t�

p�t�
� (9)

where B��t� denotes how far q��t� deviates from the frequency given by the binomial
distribution: B��t� � q��t� � p��t�.

The exact difference equation for p�t� can be written as

p�t� �� � p�t� �
�

�
��� p�t�� �

B��t�

�p�t�
� (10)

This equation has two unknown variables, p�t� and q��t�. Therefore p�t� cannot be
directly computed. Selection leads the population away from the binomial distribution,
and TPR is not able to recreate a binomial distribution for the offspring population.

We now discuss a function where D�t� � � if the population starts in a Hardy-
Weinberg equilibrium. An example is MULT(2) with fitness values m� � ��m� �
m� � ��m� � 
. In this case the difference equation for p�t� is given by

p�t� �� � p�t�
�

� � p�t�
� (11)

which is solved easily.
In summary, even linear fitness functions lead to difficult systems of difference equa-

tions. The genetic population moves away from Hardy-Weinberg equilibrium. A class
of multiplicative fitness functions with m�m� � m�m� leads to simpler equations,
because the population stays in Hardy-Weinberg equilibrium.

4. Gene Pool Recombination
The exact analysis of recombination together with selection leads to difficult nonlinear
differential equations. Recombination of two genotypes creates a linkage between the
genes at different loci. This linkage is very hard to describe mathematically. There-
fore we decided to look for a recombination operator that leads to simpler equations,
like those we used as an approximation. This operator must maintain the population in
a Hardy-Weinberg equilibrium. More general for n loci, it must create a multinomial
distribution of the genotypes. Fortunately, there is a simple recombination scheme that
fulfills this condition; we call it gene pool recombination (GPR).



Definition: In gene pool recombination the two “parent” alleles of an offspring
are randomly chosen for each locus with replacement from the gene pool given by the
parent population selected before. Then the offspring allele is computed using any of
the standard recombination schemes for TPR.

For binary functions GPR is obviously a Bernoulli process. Let psi �t� be the fre-
quency of allele 1 at locus i in the selected parent population. Then GPR creates off-
spring with allele frequency pi�t � �� � psi �t� and variance pi�t � ���� � pi�t � ���
at locus i.

In order to analyze GPR we will derive difference equations for the gene frequen-
cies, valid for arbitrary fitness functions and infinite populations. As before, we restrict
the analysis to the case of two loci and proportionate selection.

Let qi�t� be the frequency of genotype i at generation t. For n � � loci, the marginal
gene frequencies p��t� and p��t� can be obtained from

p��t� � q��t� � q��t� p��t� � q��t� � q��t��

We assume that the initial population has a binomial distribution. This means that

q���� � ��� p�������� p�����

q���� � ��� p�����p����

q���� � p������� p�����

q���� � p����p�����

Then the following theorem holds:

Theorem 1 Let the initialpopulationhave a binomialdistribution. For an infinitepop-
ulationwith GPR and proportionate selection, the marginal frequencies p��t� and p��t�
can be obtained from

p��t � �� � p��t�
m���� p��t�� �m�p��t�

�f �t�
(12)

p��t� �� � p��t�
m���� p��t�� �m�p��t�

�f�t�
� (13)

The realized heritability, b�t�, is given by

b�t� � �� �m�m� �m�m���m� �m� �m� �m��
p�p���� p���� � p��

V �f
(14)

where p�� p�� V� and �f depend on t.

Proof: Proportionate selection selects the genotypes for the parents of population t��
according to

qsi �t� �
mi

�f�t�
qi�t��

From qsi the marginal frequencies ps
�

and ps
�

can be obtained from the two equations
ps
�
�t� � qs

�
�t� � qs

�
�t� and ps

�
�t� � qs

�
�t� � qs

�
�t�. For each locus, GPR is a Bernoulli

process; therefore, the marginal gene frequencies of parents and offspring remain con-
stant

p��t� �� � ps
�
�t� � p��t � �� � ps

�
�t��



Combining these equations gives equations (12) and (13). The expression for the real-
ized heritability can be obtained after some manipulations.

Remark: Theorem 1 can be extended to arbitrary functions of size n, or geneti-
cally speaking to n loci. This means that the evolution of an infinite genetic population
with GPR and proportionate selection is fully described by n equations for the marginal
gene frequencies. In contrast, for TPR one needs �n equations for the genotypic fre-
quencies. For GPR one can in principle solve the difference equations for the marginal
gene frequencies instead of running a genetic algorithm.

Note that b�t� � � if m�m� � m�m� or if m� � m� � m� � m�. Let us first
consider ONEMAX(2). The average fitness is given by �f �t� � p��t� � p��t�. If
p���� � p����, we have p��t� � p��t� � p�t� for all t. From �f �t� � �p�t� we obtain

R�t� � �� p�t� (15)

and

p�t� �� � p�t� �
�

�
��� p�t��� (16)

This equation is similar to the equation obtained for TPR. It can be solved easily. Both
equations become equal if B��t� � �. This shows that for linear fitness functions,
GPR and TPR give similar results — with a slight advantage for GPR, which converges
faster.

Let us now turn to the function MULT(2). Combining �f �t� � ���p�t��� with equa-
tion (12), we obtain equation (11). For MULT(2) TPR and GPR lead to the same dif-
ference equation. One can show that in general for multiplicative functions (m�m� �
m�m�) TPR and GPR are equal.

For many loci the above analysis can easily be extended to fitness functions which
are called “unitation” functions. For these functions the fitness values depend only on
the number of ��s in the genotype. Again for simplicity we consider three loci only.
Let ui denote the fitness of a genotype with i ��s. Under the assumption that p���� �
p���� � p����, all marginal frequencies have the same value, which we denote as p�t�.
Then we obtain for the marginal frequency p�t � �� � c � p�t�

c �
u���� p�� � �u�p��� p� � u�p

�

u���� p�� � 	u�p��� p�� � 	u�p���� p� � u�p�
� (17)

where p � p�t�. If c � � the marginal frequency p�t� increases, if c � � it decreases.
As a specific example we analyze a “deceptive” function of 3 loci (see Goldberg 1989).
Let the fitness values of this function be u� � ��� u� � ��� u� � 	�. The global
optimum is at ���, the local optimum at ���. The fitness value for u� will be varied.
Depending onu� and the initial population, the genetic population will converge to ���
or ���. In figure 1 c is shown for u� � � and u� � �. For u� � �, the area where the
marginal frequency p is decreasing is larger than the area where the marginal frequency
is increasing. This means that the population will converge to the second optimum if
p��� � ��. For u� � �, the population will converge to ��� if p��� � ��.

Remark: The analysis of unitation functions of three or more loci shows that a ge-
netic algorithm using selection and recombination only is not a global optimization
method. Depending on the frequency distribution of the genotypes and the fitness val-
ues, a genetic algorithm with infinite population size will deterministically converge to
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Figure 1: The line c � � divides the attractor regions ��� and ���.

one of the local optima. The equations derived in this chapter can be used to determine
the optima to which the genetic algorithm will converge.

As a last example we will analyze a fitness function where the results of TPR and
GPR are very different. For simplicity we take two loci. The fitness values are defined
as m� � �����m� � ��m� � �� and m� � �.

Table 1: Results for TPR and GPR for a bimodal function
t REC q� q� q� f V ar

0 TPR 0.250 0.250 0.250 0.4975 0.2475
1 TPR 0.372 0.125 0.378 0.7463 0.1857
2 TPR 0.369 0.125 0.381 0.7463 0.1857
3 TPR 0.365 0.125 0.385 0.7464 0.1856
9 TPR 0.287 0.121 0.471 0.7556 0.1819

0 GPR 0.250 0.250 0.250 0.4975 0.2475
1 GPR 0.247 0.250 0.252 0.4975 0.2475
2 GPR 0.242 0.250 0.257 0.4977 0.2476
3 GPR 0.233 0.250 0.268 0.4983 0.2477
6 GPR 0.120 0.226 0.427 0.5457 0.2467
9 GPR 0.000 0.006 0.988 0.9883 0.0115

Table 1 shows that GPR very slowly changes the gene frequencies at the beginning.
In fact, if m� � � the population would stay in equilibrium. After three generations
GPR changes the gene frequencies very quickly. In contrast, TPR dramatically changes
the frequencies in the first generation. The population immediately goes to the equilib-
rium points for the symmetric fitness function m� � m� � ��m� � m� � �. It takes
TPR a long time to leave this equilibrium point and march to the optimum.

Proportionate selection should not be used for a genetic algorithm, its selection in-
tensity is far too low (Mühlenbein and Schlierkamp-Voosen 1994). Unfortunately, for
other selection methods the equations for the marginal gene frequencies are difficult to
obtain. For truncation selection an approximate analysis can be done by using the equa-
tion for the response to selection. The following theorem was proven by Mühlenbein
and Schlierkamp-Voosen (1993) in a different context.



Theorem 2 Let p�t� be the frequency of allele 1 in the population at generation t. Let
the fitness have a binomial distribution, i.e. �p�t� �

p
n � p�t� � ��� p�t���

If the population is large enough to converge to the optimum, and if the selection
intensity I is greater than�, then the number of generations needed to reach equilibrium
is approximately

GENe �
�	
�
� arcsin��p� � ��

�
�
p
n

I
� (18)

where p� � p��� denotes the probability of allele 1 in the initial population. The value
p�t� can be approximated as

p�t� � ��

�
� � sin�

Ip
n
t� arcsin��p� � ���

�
� (19)

Remark: The assumptions of the theorem are fulfilled for the ONEMAX(n) func-
tion. In this case the theorem is also approximately valid for TPR (Mühlenbein and
Schlierkamp-Voosen 1994). For ONEMAX(n) GPR converges about �� faster than
TPR.

5. Genetic drift
The analysis of the previous sections is valid for very large populations. This leads to
deterministic equations for averages. In finite populations the chance introduced by fi-
nite sampling has to be modelled. The mathematical analysis can be done in principle
with Markov chains, but, unfortunately, the number of transitions scales exponentially
with the number of loci and the size of the population. The analysis gets simpler if
we assume no selection. This case is called genetic drift. The finiteness of the popula-
tion causes convergence to a single genotype, even without selection. It is a result of
sampling with replacement. Genetic drift is an important factor for genetic algorithms,
because if the selection is too weak, then genetic drift is causing the “convergence” of
the population.

Asoh and Mühlenbein (1994) have analyzed genetic drift for TPR. They showed
that a genetic algorithm with TPR but without selection converges surprisinglyquickly.
This means that just by sampling with replacement, the variance of the population is
continuously reduced. At the equilibrium the population consists of a single genotype
only. For TPR the following proposition was obtained by fitting numerically obtained
values:

Proposition 1 Let the number of loci be n. Let each gene have two alleles. Using TPR
the mean convergence time 
n�N � of a population of size N is approximately


n�N � � ��
N ��� ln�n� � ���� for p��� � ���� (20)

Genetic drift for GPR is similar to a standard statistical process. Given n independent
sampling processes with replacement, each process having a populationN , what is the
expected time for all n processes to converge, i.e to consist of copies of one member
only? This is a classical statistical question which can be answered for certain distrib-
utions. We state the following theorem without proof.



Table 2: Genetic drift for GPR (n loci, N popsize).
n/N 5 11 51 101 401

1 5.7 13.9 68.9 137.9 553.1
2 8.0 19.2 94.8 189.5 759.0
4 10.6 25.4 124.4 248.4 993.5
8 13.4 32.0 156.3 311.9 1247.0

16 16.4 38.9 189.5 378.0 1510.0

Theorem 3 Let the expected mean convergence time of the process be exponentially
distributed with mean 
 � ���. Then the expected mean time for all n processes to
converge is given by


n �
�

�

nX
���

�

�
� (21)

The sum can be approximated by ln�n� �  with  � ���� � � �. By setting ��� �
��
N equations 20 and 21 have the same asymptotic order. We have not been able to
verify that the expected mean convergence time of GPR is exponentially distributed.
Therefore we present numerical simulations obtained by Markov chains in table 2.

For n � � GPR and TPR are equal. For large N the mean time to convergence is
approximately 
� � ��	�N , as predicted by the proposition. The increase of 
 withn is
smaller than given by equation 21. A comparison of the numerical values for TPR pre-
sented by Asoh and Mühlenbein (1994) and table 2 shows that 
n is only slightly larger
for GPR than for TPR. This demonstrates that TPR and GPR give on the average very
similar results, despite the fact that the underlying statistical processes are different.

Genetic drift is an important factor for genetic algorithms, especially in small pop-
ulations. Whereas large populations converge deterministically to an equilibrium, can
small populations converge to any of the many optima.

6. Conclusion
Gene pool recombination more closely resembles standard statistical process than does
two-parent mating. For genetic algorithms GPR clearly separates the two stages of a
search (which can be identified in any mathematical search algorithm): selecting promis-
ing areas to be searched and searching these areas in a reasonable manner. GPR searches
within the selected area more reasonably than does TPR, which is more biased to the
specific genotypes of the population.

GPR is mathematically more tractable than TPR. Nevertheless, the behavior is often
surprisingly similar. In terms of population genetics: GPR keeps the population in a
Hardy-Weinberg equilibrium, i.e., the genotypes always have a binomial distribution.

The equations obtained for GPR with infinite population clearly show that a genetic
algorithm using only recombination is not a global optimizer. The genetic algorithm
will not converge to a small isolated peak, even if it is the global optimum. Depending
on the initial distribution of the genotypes, the population will deterministically con-
verge to an area that has a large attractor region with many good fitness values. For a
small population the genetic algorithm may converge to any good fitness value, just by
chance.

The GPR idea can be easily extended to other problem domains. For continuous
functions it directly leads to multi-parent search as described by Glover (1994). Vari-



ants of GPR have been successfully used for the traveling salesman problem. GPR lib-
erates genetic algorithms from two-parent mating and all the difficult problems con-
nected with it. Our theoretical analysis confirms the observationof Eshelman and Schaf-
fer (1993): ”Our hunch that the unique niche for pair-wise mating is much smaller than
most GA researchers believe, and that the unique niche for two-point crossover is even
smaller.”
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