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Abstract

In this paper mutation and hillclimbing are analyzed with the help of representative
binary functions and a simple asexual evolutionary algorithm	 An optimal mutation rate
is computed and a good agreement to numerical results is shown	 In most of the cases
the optimal mutation rate is proportional to the length of the chromosome	 For deceptive
functions an evolutionary algorithm with a good hillclimbing strategy and a reasonable
mutation rate performs best	 The paper is a 
rst step towards a statistical analysis of
genetic algorithms	 It shows that the power of mutation has been underestimated in
traditional genetic algorithms	

�� Introduction

The parallel genetic algorithm PGA introduced in ���
 ����� ����� ���� uses two major
enhancements compared to the genetic algorithm ���	 First� selection and mating is con�
strained by a population structure	 Second� some or all individuals of the population may
improve their 
tness by hillclimbing	 The importance of a population structure for genetic
algorithms has been demonstrated in �������� ����	 In this paper the e�ect of hillclimbing
is investigated	 Closely connected to hillclimbing is mutation	

The method of investigation di�ers from previous approaches to understand how genetic
operators work	 The investigation proceeds bottom�up	 First mutation and hillclimbing
is isolated analyzed within the framework of a very simple evolutionary algorithm	 This
will be done both empirically and analytically for a test suite of binary functions	 Then
the genetic operators will be combined in more complex genetic algorithms	

Previous studies on how the genetic algorithm works have proceeded along two di�erent
lines	 In the 
rst line of approach� the theoretical one� most arguments are based on the
schema theorem ���	 I have already mentioned in ���� that this theorem cannot be used
to explain the search strategy of the genetic algorithm	 The second line of research
was experimental and top�down	 Here a full�blown genetic algorithm was run and the
parameters of the GA were optimized for a suite of test functions	 An example is the
work of Grefenstette �
�	 His research was extended by Scha�er et al ����	 Empirically
Scha�er found that the following formula gave an almost optimal parameter setting for
their test suite

lnN � ���� lnm� ���� ln n � ���� ���

�



where

N �� size of the population
m �� mutation rate
n �� length of the chromosome

This equation can be approximated by

N �m � pn � ��
 ���

The formula indicates that the mutation rate should decrease with the size of the
population	 This paper will show that the formula is incorrect in general	 A theoretical
explanation of the above formula was tried by Hesser et al	 ���	 The proof� however� was
based on heuristic arguments in favour of the formula to be proven	

Fogarty ��� investigated variable mutation rates	 He found that the mutation rate
should decrease with the number of generations	 This conclusion will be con
rmed in this
paper	 But the main emphasis of the analysis is a 
xed mutation rate	

The bottom�up approach isolates the e�ects of the di�erent parameters more clearly	
The goal of this research is to end up with a robust PGA which needs only a few parameters
to be input by the user	 In fact� the current PGA uses only three parameters � the size of
the population� the mutation rate and a criterion determining when to do hillclimbing	

This paper will derive 
rst guidelines on how to set the mutation rate	 The guidelines
cannot be speci
ed by a simple formula like ���	 The interdependence of the parameters
is much more complex	 Furthermore� they strongly depend on the 
tness function	

The outline of the paper is as follows	 In section two a synthetic test suite is introduced	
Then the basic evolutionary algorithm �� � ��m� hc� is de
ned	 This algorithm models
evolution with a population of size �	 In the next two sections the algorithm is analyzed	
Then the e�ect of hillclimbing is investigated	

�� The synthetic test suite

Our test suite consists of three representative binary functions

� ONEMAX function

� �k�l��deceptive function

� EQUAL function

ONEMAX just gives the number of ��s in the given string	 A �k� l��deceptive function
consists of l subfunctions� each of order k	 The subfunctions have two local maxima	
The global maximum is located at ���� � � � ��	 It is isolated	 The search is attracted
by the local maximum located at ���� � � � ��	 The idea of using deceptive functions for
performance analysis of genetic algorithms has been emphasized by Goldberg ���	 The
following deceptive function of order k � � has been used by many researchers	



bit value bit value
��� �� ��� ��
��� � ��� ��
��� � ��� ��
��� � ��� ��

The 
tness of a �k� l�� deceptive function is de
ned as the sum of the 
tness of the l
subfunctions	 General order k deceptive functions can be found in ����	

EQUAL is de
ned as follows

EQUAL�b� � n� � ��� ����� ���

EQUAL has many global maxima� which are given by an equal number of ��s and ��s
� for n even�	 EQUAL is used in population genetics for the analysis of quantitative �or
metric� traits ���	

�� The �� � ��m� hc��algorithm

In the bottom�up approach mutation and local hillclimbing will be analyzed within the
framework of a very simple evolutionary algorithm	 Variants of this algorithm were used
by many researchers � e	g	Bremermann ���� Rechenberg �����	

I called the algorithm Iterated Hillclimbing in an earlier paper ����	 But the name
�� � ��m� hc��algorithm seems to be more appropriate	 First� the interpretation of the
algorithm in evolutionary terms is straightforward	 Second� the name emphasizes the
importance of the mutation rate m	 Third� the algorithm has been analyzed in the
problem domain of continuous functions by Bremermann ��� Rechenberg ���� and Schwefel
��
�	 �� � �� denotes that the algorithm uses one parent and one o�spring	 The better of
them will be parent of the next generation	

�� � ��m� hc��algorithm

STEP�� Generate a random initial string s

STEP�� If hc �� �� do the hillclimbing strategy hc� giving a modi
ed s�	
If f�s�� � f�s� then s �� s�

STEP�� If not TERMINATED� change each bit of s with probability m� giving s�
go to STEP�

This simple algorithm performs surprisingly well	 Therefore it should be used as a
benchmark for any other new search method	

	� Performance analysis of the �� � ��m��algorithm

This section is an extension of the work presented in ����	 First the �����m��algorithm
will be analyzed for the ONEMAX function	 Despite the simplicity of the algorithm and



of the ONEMAX function� its statistical analysis is of surprising complexity	 The analysis
starts with the following question�
Given an initial string with i bits wrong� What is the expected number of trials T�k�n�m�

required to reach the optimum�
This problem can be investigated with the theory of Markov chains	 The Markkov

process can be described by �n� �� states	 Each state is de
ned by the number of ��s in
the string	 The transition probabilities are given as follows

p�Mj �Ml� � � if l � j

p�Mj �Ml� �
jX

r��

Kmr�s � �� �m�n��r�s� s � l � j � r � r � n� l � l � j

p�Mj �Mj� � ��X
l�j

p�Mj �Ml�

K is a product of binomial coe�cients	 The number of trials T can be obtained by
inverting the matrix of the above transition probabilities	 The exact computation is
outside the scope of this paper	 Instead� I will make an approximate analysis� trying
to neglect higher order terms in m	 This analysis has been inspired by the work of
Bremermann ���	 The approximation will be justi
ed by comparisons with numerical
experiments	

Let us start with a simple example	 The probability of a transition from state j � � to
state j � n is given by

p�M� �Mn� � �� �m� �mn��

It is the product of mutating n�� bits and not mutating the correct bit	 This probability
is the largest for

m � �� ��n

If this mutation rate is applied� the mutated string will have two wrong bits on the
average	 It is very unlikely that the correct bit is not �ipped� because the mutation rate
is very high	 Furthermore one of the n bits will not be �ipped	 But this bit is wrong
with a high probability	 So the algorithm is left with the problem to get the last two
bits correct	 It is easily seen that the algorithm has most di�culty getting the last bits
correct	 In this case the probability is high mutating the correct bits and low mutating
the incorrect bits	

The theoretical analysis will be restricted to the above case� i	e	 small i and m � � 	
With these assumptions we may neglect higher order terms in m	 Then the probability
of an improvement is approximately given by

P �i�m� � �� �m�n�i��� �� �m�i� ���

P is just the product of the probabilities of not changing one of the �n � i� correct bits
and changing at least one of the i wrong bits	 From the above equation an optimal
mutation rate can easily be computed	 The solution is given by

m�i� � � � �� � i

n
���i ���



For large n and i� n� the optimal mutation rate is approximate m � ��n	
If the �� � ��m��algorithm knew in each step how many bits were wrong� then a mu�

tation rate which decreases with i would be optimal	 This observation explains Fogarty�s
result ���	 But the above assumption is of course unrealistic	 Therefore the analysis will
be based on a 
xed mutation rate	 The amount of computation with a 
xed mutation
rate and a variable mutation rate is not very di�erent because the major problem is to
get the last few bits correct	 This result was also experimentally found by Fogarty ���	

The expected number of trials T to obtain an improvement can be computed from the
probabilities	 We assume that the number of trials needed to get an improvement if i bits
are not correct is given by

� T �i�m� �� ��P �i�m�

If the initial string is randomly generated� we expect that about n�� of the bits will be
wrong	 Then the total number of expected trials to reach the optimum can be approxi�
mated by

� T �m� � �
n��X
i��

� T �i�m� �

Theorem � For m � k�n with n 	 �� k � n� the expected number of trials to reach
the optimum is approximately given by

� T �m� � 
 ek
n

k
lnn�� ���

Proof�

P ��� k�n� � �� � k�n�n�� � k�n �� e�k � k�n

P �i� k�n� 
 �� � k�n�n�i � i � k�n �� e�k � k�n � i

T �k�n� 
 ek � n�k
n��X
i��

��i

Because of

n��X
i��

��i � lnn�� � �

we obtain the result	

Remark� The theorem is valid for any unimodal binary function� The optimal mutation
rate is m � ��n� A mutation rate k�times larger than the optimal mutation rate is worse
than a mutation rate k�times smaller�

The last observation follows from the fact that

T �k�n�

T ���kn�
�

ek

e��k
� k� �
�



Theorem � gives an estimate of the number of trials	 This estimate is an upper bound
for the amount of computation	 For small mutation rates like m � ��n the string maybe
not changed at all after testing all n loci	 The following expressions give the distribution
of the number of changed bits

prob�� bits changed�m�k�n� � ���m�n �� e�k

prob�� bit changed�m�k�n� � nm���m�n�� �� k�e�k

prob�� bits changed�m�k�n� �� k�

��
e�k

An obvious improvement of the �� � ��m��algorithm is to introduce a little bit of
�intelligence and to check if there is no bit changed after mutation	 Then the total
amount of computation in number of function evaluations is given by T �k�n��� � e�k�	
The last factor is the probability that at least one bit is changed by mutation	

Table � gives numerical data	 The initial con
guration was the � string� the mutation
rate was m � ��n	

Table �
Numerical results for ONEMAX� q��

n T sd min max T est	
�� ��� �� ��� ��� ���
�� ��
 ��� ��� ���� 
��

��� ���� ��� ��� ���� ����
��� ���� ��� ��
� 
��� ����

The agreement between formula ��� and the numerical results is surprisingly good	 The
numerical values clearly show the predicted asymptotic behavior of n ln n	

The EQUAL function is very easy to optimize for the �� � ��m��algorithm	 Therefore
we omit the statistical analysis and just give the numerical results	

Table �
Numerical results for EQUAL� q��

n T sd min max
�� �� �	� �
 ��
�� �
 ��	� �� ��

��� ��� ��	� �� ���
��� ��� ��	� ��� ���

The table shows that the number of trials to reach the optimum increases linearly with
the problem size n	 So EQUAL seems to be not a good candidate to be included in
a test suite of optimization functions	 But I will show in a forthcomimg book that the
EQUAL function poses more di�culties to the plain genetic algorithm than the ONEMAX
function	




� Performance analysis of �k� l��deceptive problems

The analysis proceeds as in the previous section	 Let i be the number of subfunctions
which are wrong	 For simplicity assume that all wrong subfunctions are at the local
maximum �������	 This assumption is ful
lled with high probability after the early stages
of the �� � ��m��algorithm because the search is attracted by the local minimum	

The �� � ��m��strategy will get nearer to the optimum� if at least one of the wrong
subfunctions is changed to ������� and not a single one of the k � �l � i� correct bits is
�ipped	 For m� � m� the probability of success is given by

P �i�m� � ���m�n�k�i � �� � ���mk�i�

The most di�cult task for the algorithm is to get the very last subfunction correct	
Therefore we consider P���m� only	

In this case the optimal mutation rate m can easily be computed	 We obtain

m � k�n

The following formulas give the probabilities of success for the optimal mutation rate
and the standard mutation rate m � ��n	

P ��� k�n� 
 e�k � l�k

P ��� ��n� 
 e�� � k�k � l�k

Theorem �� For n	 �� k � n� the expected number of trials T to reach the optimum
for a �k� l��deceptive function is given by

� T ���l� �
 ek � lk � ln l ���

� T ���n� �
 e � kk � lk � lnl

Proof� See Theorem �

The following table gives some numerical results for the case k � � and m � k�n	

n T sd min max T est	
�� �

�
 ����� �

�� �����
 �����
�� ������ ������ ���
�� ������
 ������

The table shows a high variance of � T �	 Our crude estimate captures the overall
tendency	 The �� � ��m��algorithm has no di�culties with deceptive functions	 The
amount of computation increases exponential in k� the order of the deceptive subfunction	



�� Analysis of hillclimbing

I have shown in a number of papers ����������� that the e�ciency of the PGA improves
dramaticallly if hillclimbing is used	 In this section two popular hillclimbing methods
will be analyzed � next ascent na and steepest ascent sa hillclimbing	 In next ascent
hillclimbing� the bits are �ipped in a prede
ned sequence	 A �ip is accepted� if the new
string has a higher 
tness value	 In steepest ascent hillclimbing� all of the remaining bits
of the sequence are �ipped	 Then the bit which gives the largest 
tness improvement is
actually �ipped	

The following result is trivial	
Next ascent needs n trials to reach the optimum for ONEMAX� steepest ascent needs

n��n�	�
� trials�
In this application� the more sophisticated hillclimbing methods performs worse than

even the �� � ��m��algorithm!
Let us now turn to the analysis of the �k� l��deceptive function	 For simplicity the

analysis is restricted to the case k��	 The extension to arbitrary k is straightforward	
Let i be the number of subfunctions wrong	 Let P�i�x�y� be the probability that a mu�

tation generates a new con
guration which will lead to an improvement after hillclimbing	
x denotes the probability of jumping into the attractor region ����� from �����	 y is the
probability of jumping into the attractor region ����� from �����	 Then the probability
can be estimated like in the case of the ONEMAX�function	

P �i� x� y� � ��� y�l�i � ��� �� � x�i� ���

For next ascent one obtains

x � m� � ���m� �m	 � m�

y � � �m�m� 
 � �m
These formulas can be derived as follows	 Given ����� we have to generate ����� or

����� to get into the attractor region of �����	 This gives x	 On the other hand� six of
the eight possible con
gurations lead to the attractor region ����� from �����	

In the same manner one gets for steepest ascent

x � �m� � �m	 
 �m�

y � �m� � �m	 
 �m�

The number of tested con
gurations to obtain an improvement is given by

C�i�m� hc� � ��P �i� x� y� ��hcop

Here �hcop denotes the number of hillclimbing operations per mutation	 For next
ascent we simply have �naop � n	 The analysis of steepest ascent is more di�cult
because �saop depends on the number of subfunctions �sc which have been changed by
the mutation	

�saop � n � ��sc� ��



�sc can be obtained from the probability distribution of how many subfunctions are
changed by a mutation	 This computation is omitted	 For next ascent hillclimbing an
optimal mutation rate can be computed as before by maximizing P ��� x� y�	 The optimal
mutation rate is given by

m �
�

l � �

If we maximize P ��� x� y� for steepest ascent we obtain

m �
q
��n

This mutation rate minimizes the number of generations needed to reach the optimum�
but not the number of tested con
gurations	 The mutation rate is much larger than
m � ��l	 Therefore it changes more subfunctions	

The following theorem just summarizes the results	

Theorem �� The probability Prob that the �� � ��m� hc�� algorithm gets the last sub�
function of a ��� l��deceptive function correct is given by

Prob��� ��l� na� 
 e�� � l��

Prob���
q
��n� sa� 
 e�� � l��

Prob��� ��l� sa� 
 � � l��

Prob��� ��n� sa� 
 ��� � l��

The number of tested con�gurations to reach the optimum is given by

C���l� na� 
 �e�l	 � ln l ����

Proof� See Theorem�	

Remark� The probabilities are all of the same order in l� except steepest ascent with

a mutation rate of
q
��n	 As mentioned above� this mutation rate need not to minimize

the amount of computation	 The �� � �� ��l� na��algorithm performs only slightly better
than the �� � �� ��l��algorithm	

In table � numerical results for a range of mutation rates are given	 The ��� ��m� sa��
algorithm performs much better than the other two algorithms	 The amount of com�
putation is fairly constant in a range of reasonable mutation rates	 For l � �� a mu�

tation rate of
q
���� gives the lowest number of generations� but a mutation rate of

m � ���� minimizes the amount of computation	 It is an open question� whether the
�� � ��m� sa��algorithmus with an optimal mutation rate is asymptotically of less order
in l than the other two algorithms	

The last two rows of table � show results for the case q � �	 Here the algorithm
starts with the worst initial string� but the amount of computation is only slightly larger
than starting with half of the bits correct	 This demonstrates also numerically that the
�� � ��m� hc��algorithm spends most of its time getting the last subfunctions correct	

The results of this section can be summarized	
A good hillclimbing strategy reduces the amount of computation substantially�



Table �
Numerical results for a ���l��deceptive function

n hc m q T Con	
�� na �	��� �	� ���� �
���
�� sa �	��� �	� �� �����
�� sa �	��� �	� �
 
���
�� sa �	��� �	� ��� ������
�� sa �	��� �	� ��� ������
�� sa �	��� �	� ��� 
����
�� sa �	��� �	� ��� ���
�
�� sa �	��� �	� ��� �
���
�� sa �	��� �	� ��� ������
�� sa �	��
 �	� �
�� ������
�� na �	��� �	� 

�� ������
�� sa �	��� �	� ��� �����
�� sa �	��� �	� �
� �����

�� Conclusion and outloook

In this paper search by mutation and hillclimbing was investigated in a bottom�up man�
ner	 Search by mutation appears to be fairly robust and can be analyzed with statistical
methods	 In a forthcoming paper search by crossingover will be investigated for the same
set of test functions	 It will be shown that both search methods are complementary	 The
probability that a mutation will give a better string decreases with the number of bits
which are correct	 In contrast� the probability that crossingover produces a better string
increases with the number of correct bits	

The question now arises� How to combine mutation and crossingover in a genetic algo�
rithm so that there will be a synergy e
ect� This question will be answered in a forthcom�
ing book	 The numerical experiments have been completed	 The results will explain why
many nonstandard genetic algorithms perform well and the standard genetic algorithm
performs poorly	
Acknowledgement� The author thanks Andreas Reinholtz� who has done the numer�

ical experiments	
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