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1 The Problem

The real world is open and ambiguous. The pro-
blem of its openess has been neglected in science
for a long time, especially in artificial intelli-
gence. Most researchers in artificial intelligence
still deal with closed worlds. A recent example
is the CYC project from Lenat which started in
1984. Lenat believed that after entering about
10 million facts into CYC, that “CYC will grow
by assimilating textbooks, literature, newpapers
etc.”. Now, in 1994 it turned out, that CYC has
hardly enough knowledge for a small artificial
domain in VLSI design.

Openess is a deep problem, it has to be taken
seriously. The real world is not completely kno-
wable. In fact, the domain of knowledge is very
small compared to the huge unknown domain.
Any system operating in the real world has to
act with incomplete knowledge. This general ob-
servation has far reaching implications for proba-
bility theory and statistical inference. The theo-
retical discussion in these areas culminated in
Popper’s famous sentence: "All knowledge is as-
sumption knowledge”. Every knowledge formu-
lated as a hypothesis is preliminary, subject to
rejection if new data is in contradiction to the
hypothesis. In more technical terms this means
for statistical inference: Probabilistic hypotheses
do not have a hypothesis probability. 1t is possible
to rate a number of hypotheses according to how
good they explain the data, but it is not possible
to compute a number which can be interpreted
as the probability of a given hypothesis.

2 A Possible Solution

In the real world artificial systems face the same
problem as living beings - they have to act in an
open world with incomplete knowledge. There-
fore it seems worthwhile to investigate how living
beings cope with this situation. Research results
are already available in biology, psychology and
philosophy. I will only discuss some philosophical
aspects. The importance of a philosophy for ro-
bot design has already been pointed out by the
biologist Waddington. He wrote in 1974: “The
only way to make a robot anything more than an
adding machine is to provide him with a philoso-
phy.” For Waddington the essential function of a
philosophy is to provide a mental machinery for
dealing with a large variety of things.

I believe that reflection is a necessary element of
such a philosophy. In an open world a system has
to know what it knows and - still more import-
ant - what it does not know. The system can
incrementally acquire the knowledge by selfas-
sessment. The importance of knowing the boun-
dary between knowledge and ignorance has been
advocated by many philosophers both in east
and west. [ only want to mention the guideline
from Lao Tsu: Knowing ignorance is strength,
ignoring knowledge is sickness.

The scientific challenge for real world computing
is to put this general philosophy into something
similar to a calculus.



3 JANUS - a robot for open
worlds

JANUS is a robot with two arms and two ca-
meras designed to operate in open worlds. This
term is applied to worlds that are not (yet) com-
pletely and unambigously definable from the in-
formation gathered about them so far. JANUS
consists of a large numer of heterogeneous algo-
rithms and sub-systems called agents that ope-
rate in parallel and independently. We have not
vet been able to define a claculus in the stati-
stical sense do deal in general with open worlds.
Therefore a number of rudimentary principles,
defining a general philosophy, has been develo-
ped for JANUS.

1. Adaptivity
Agents should have the ability to adapt to
the world and complement their basis heuri-
stics with experience-based approximations
of relevant functions.

2. Reflection
The agents at every level of the system
should be able to assess their own perfor-
mance, and be able to say where they are
expert and where they perform well. Like-
wise they should know what they do not
know.

3. Exploration
The system should not passively wait for su-
pervision, but actively explore the problem
domain.

4. Learn from nature
When a non-trivial problem allows itself to
be expressed in such a form that is similar to
those seen in natural systems, borrow ideas
from the way it has been solved here.

5. Reuse knowledge
Try to reuse knowledge learnt in one task
to solve similar looking problems in another
task. Construct transformable hypotheses.

6. Open internal structure
Allow the structure of the system to be of an
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open heterogeneous nature, to enable diffe-
ring problem solving methods to work con-
currently and complementarily, and allow
the progressive addition of new methods.

7. Team work
Solve complex problems by combining many
simple solutions in an iterative manner, in-
stead of attempting to construct a single
global solution mechanism.

8. . Be optimistic
Do not expect the worst case. Optimize for
the average case.

We have started to formalize some of the above
principles, namely reflection and exploration.
The latter one is based on stochastic modelling.
We will not describe this here, but one of the
first problems solved by stochastic modelling.

4 Genetics - a case study in
stochastic modelling

Stochastic modelling seems to be a promising
calculus for dealing with ambiguity. A very im-
portant case study in stochastic modelling can
be found in quantitative genetics. The case study
deals with explaining the macroscopic observed
evolution of livestock and plants by the micros-
copic chance model invented by Mendel.

The group of biometricians centered around
Pearson succeeded in quantifying Darwin’s evo-
lution theory in purely macroscopic terms. They
invented a variety of now standard statistical
techniques, including those of correlation and re-
gression. The theories required knowledge of the
correlation between relatives for various charac-
ters (e.g. height). Empirical estimates of these
correlations were obtained and used in the ana-
lysis. No genetics is involved.

After rediscovering Mendel’s genetic chance mo-
del, researchers tried to derive the empirical laws
from Mendel’s chance model. Fisher solved the
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problem for a trait governed by one gene as early
as 1922, but it took many years to solve the ge-
neral case for an arbitrary number of genes. The
general solution was proven by Kempthorne. He
was able to predict the covariance between pa-
rent and offspring from Mendel’s model. The pre-
diction uses one of the most difficult statistical
techniques in use today, namely the decompo-
sition of the covariance. We have rediscovered
this result and applied the method to the Bree-
der Genetic Algorithm. Unfortunately it turned
out, that for complex fitness landscapes the pre-
dictive power of the covariance decomposition is
very limited, less than of the purely macroscopic
regression analysis. The reason for this seems to
be that the assumptions needed for the decom-
position are very severe and seldom fulfilled.

This result seems to indicate that Mendel’s
chance model leads to a macroscopic world which
is very difficult to predict from the microscopic
processes. We are currently investigating the im-
plications of this result for theoretical biology.



